กฎการเคลื่อนที่ ของ กฎการเคลื่อนที่ของนิวตัน

กฎการเคลื่อนที่ข้อที่ 1

ดูบทความหลักที่: ความเฉื่อย
คำอธิบายกฎการเคลื่อนที่ข้อที่หนึ่งของนิวตันและกรอบอ้างอิง (MIT Course 8.01)[14][15]

กฎข้อแรกระบุว่า ถ้าแรงลัพธ์ (ผลรวมของแรงทั้งหมดที่กระทำต่อวัตถุ) เป็นศูนย์แล้วความเร็วของวัตถุจะเป็นค่าคงที่ ความเร็วเป็นปริมาณเวกเตอร์ ซึ่งแสดงทั้งความเร็วของวัตถุและทิศทางของการเคลื่อนที่ ดังนั้นความเร็วของวัตถุคงที่จึงต้องคงที่ทั้งขนาดและทิศทางด้วย

กฎข้อที่หนึ่งสามารถเขียนเป็นสมการคณิตสาสตร์ได้ เมื่อมวลเป็นค่าคงที่ที่ไม่เป็นศูนย์ คือ

∑ F = 0 ⇔ d v d t = 0 {\displaystyle \sum \mathbf {F} =0\;\Leftrightarrow \;{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=0}

ดังนั้น

  • วัตถุที่หยุดนิ่งจะหยุดนิ่งต่อไปเรื่อย ๆ เว้นแต่จะมีแรงภายนอกมากระทำ
  • วัตถุที่กำลังเคลื่อนที่จะไม่เปลี่ยนแปลงความเร็ว เว้นแต่จะมีแรงภายนอกมากระทำเช่นกัน

กฎข้อนี้นำมาซึ่งแนวคิดเกี่ยวกับ ความเฉื่อยของวัตถุ และแฝงคำจำกัดความของกรอบอ้างอิงเฉื่อย (inertia frames of reference) ไว้ ในทางปฏิบัติระบบอ้างอิงเฉื่อยคือระบบอ้างอิงที่อยู่นิ่งหรือเคลื่อนที่ด้วยความเร็วคงที่ (ไม่มีความเร่ง) เทียบกับดาวไกลโพ้น กรอบอ้างอิงเฉื่อยเป็นเงื่อนไขเพื่อให้กฎข้อที่สองเป็นจริง

การเคลื่อนที่แบบสม่ำเสมอ หมายถึงการที่วัตถุจะเคลื่อนที่อย่างเดิมไปจนกว่าจะมีแรงมากระทำ ถ้าหยุดนิ่งก็จะหยุดนิ่งต่อไป (แสดงให้เห็นโดยการดึงผ้าปูโต๊ะที่มีจานวางไว้ออกอย่างรวดเร็ว จานจะวางอยู่ที่เดิมไม่ติดกับผ้าไป) ถ้าวัตถุที่กำลังเคลื่อนที่ก็จะเคลื่อนที่ต่อไปโดยไม่หมุนหรือเปลี่ยนอัตราเร็วของมัน ซึ่งเห็นได้ชัดเจนในยานสำรวจอวกาศทีเคลื่อนที่อย่างต่อเนื่องไปในอวกาศ การเปลี่ยนแปลงการเคลื่อนที่จะขึ้นอยู่กับแนวโน้มของวัตถุที่จะคงสถานะการเคลื่อนที่ไว้ ในกรณีที่ไม่มีแรงสุทธิวัตถุมีแนวโน้มจะเคลื่อนที่ไปในแนวเส้นตรงต่อไปเรื่อย ๆ

นิวตันวางกฎการเคลื่อนที่ข้อแรกเพื่อกำหนดกรอบอ้างอิงสำหรับให้กฎอื่น ๆ สามารถใช้ได้ กฎของการเคลื่อนที่ข้อแรกตั้งเงื่อนไขของกรอบอ้างอิงอย่างน้อยหนึ่งกรอบที่เรียกว่า กรอบอ้างอิงเฉื่อยหรือกรอบอ้างอิงนิวโตเนียน ซึ่งเมื่อเทียบกับกรอบนี้แล้ว การเคลื่อนที่ของอนุภาคที่ไม่ขึ้นกับแรงเป็นเส้นตรงและมีความเร็วคงที่[11][16] กฎการเคลื่อนที่ข้อแรกของนิวตันมักถูกเรียกว่ากฎของความเฉื่อย ดังนั้นเงื่อนไขที่จำเป็นสำหรับการเคลื่อนที่สม่ำเสมอของอนุภาคเมื่อเทียบกับกรอบอ้างอิงเชิงเฉื่อยคือแรงสุทธิรวมที่กระทำเป็นศูนย์ ในแง่นี้กฎข้อแรกสามารถเรียบเรียงใหม่ได้ว่า:

In every material universe, the motion of a particle in a preferential reference frame Φ is determined by the action of forces whose total vanished for all times when and only when the velocity of the particle is constant in Φ. That is, a particle initially at rest or in uniform motion in the preferential frame Φ continues in that state unless compelled by forces to change it.[17]

ในภาษาไทย คือ

ในเอกภพของสสารใด ๆ การเคลื่อนที่ของอนุภาคในกรอบอ้างอิง Φ ถูกกำหนดโดยการกระทำของแรงซึ่งมีผลรวมเป็นศูนย์เสมอ ก็ต่อเมื่อความเร็วของวัตถุนั้นคงที่ใน Φ. นั่นคือ อนุภาคที่อยู่นิ่งหรือเคลื่อนที่ด้วยความเร็วคงที่ Φ จะเป็นเช่นนั้นต่อไป นอกจากจะถูกแรงกระทำให้เปลี่ยนรูปแบบการเคลื่อนที่นั้น

กฎข้อที่หนึ่งและสองของนิวตันจะใช้ได้เฉพาะในกรอบอ้างอิงเฉื่อยเท่านั้น กรอบอ้างอิงที่อยู่ในรูปแบบเดียวกันกับกรอบเฉื่อย เช่น ความเสมอภาคแบบกาลิเลียน หรือหลักการของสัมพัทธภาพแบบนิวโตเนียน[18]

กฎการเคลื่อนที่ข้อที่ 2

การอธิบายกฎการเคลื่อนที่ข้อที่สองโดยใช้แรงโน้มถ่วงเป็นตัวอย่าง (MIT OCW)[19]

กฎข้อที่สองระบุว่า อัตราการเปลี่ยนแปลงโมเมนตัมของวัตถุเป็นสัดส่วนโดยตรงกับแรงกระทำและการเปลี่ยนแปลงโมเมนตัมนี้เกิดขึ้นในทิศทางเดียวกับแรงที่มากระทำต่อวัตถุนั้น

F = d p d t = d ( m v ) d t {\displaystyle \mathbf {F} ={\frac {\mathrm {d} \mathbf {p} }{\mathrm {d} t}}={\frac {\mathrm {d} (m\mathbf {v} )}{\mathrm {d} t}}}

เมื่อ F {\displaystyle \mathbf {F} } คือ แรงลัพธ์ที่มากระทำต่อวัตถุ p {\displaystyle \mathbf {p} } คือโมเมนตัมของวัตถุ m {\displaystyle m} คือ มวลของวัตถุ และ v {\displaystyle \mathbf {v} } คือ ความเร็วของวัตถุ

กฎข้อที่สองสามารถระบุได้ในแง่ของความเร่งของวัตถุ เนื่องจากกฎข้อที่สองนี้ใช้ได้เฉพาะกับระบบที่มวลคงที่เท่านั้น[20][21][22] m สามารถนำออกไปนอกตัวดำเนินการอนุพันธ์ได้โดยกฎของค่าคงตัวในอนุพันธ์ ดังนั้น

F = m d v d t = m a {\displaystyle \mathbf {F} =m\,{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=m\mathbf {a} }

เมื่อ a {\displaystyle \mathbf {a} } คือ ความเร่งของวัตถุ ดังนั้น แรงลัพธ์จึงเป็นสัดส่วนโดยตรงกับความเร่งของวัตถุ กล่าวอีกนัยหนึ่งว่าถ้าวัตถุมีความเร่งแสดงว่ามีแรงกระทำต่อวัตถุอยู่ การประยุกต์ใช้สัญกรณ์นี้เป็นที่มาของ g c {\displaystyle g_{c}} (Gc (วิศวกรรม))

กฎข้อนี้สอดคล้องกับกฎการเคลื่อนที่ข้อที่ 1 คือเมื่อแรงลัพธ์ที่กระทำต่อวัตถุเป็นศูนย์ โมเมนตัมของวัตถุจะมีค่าคงที่ ซึ่งความสัมพันธ์นี้หมายถึงการอนุรักษ์โมเมนตัม และเมื่อโมเมนตัมเปลี่ยนทิศทาง แม้ว่าขนาดของมันจะไม่มีการเปลี่ยนแปลง อัตราการเปลี่ยนแปลงต่อเวลาของโมเมนตัมก็จะไม่เป็นศูนย์ เช่นในกรณีที่เป็นการเคลื่อนที่แบบวงกลมสม่ำเสมอ

มวลที่ได้หรือสูญหายโดยระบบจะทำให้เกิดการเปลี่ยนแปลงโมเมนตัมที่ไม่ใช่ผลของแรงภายนอก สมการอนุพันธ์จึงเป็นสิ่งจำเป็นสำหรับระบบมวลแปรผัน (ดูด้านล่าง)

กฎข้อที่สองของนิวตันเป็นค่าประมาณ ซึ่งจะคลาดเคลื่อนมากขึ้นเมื่อวัตถุมีความเร็วสูงขึ้น โดยเฉพาะความเร็วใกล้เคียงความเร็วแสง ซึ่งเป็นผลกระทบเชิงสัมพัทธ์

แรงดล

แรงดล J {\displaystyle \mathbf {J} } เกิดขึ้นเมื่อแรง F {\displaystyle \mathbf {F} } กระทำในช่วงเวลา Δ t {\displaystyle {\Delta }t} ได้จาก[23][24]

J = ∫ Δ t F d t {\displaystyle \mathbf {J} =\int _{\Delta t}\mathbf {F} \,\mathrm {d} t}

เนื่องจากแรงเป็นเปลี่ยนแปลงตามเวลา โมเมนตัมจึงเป็น

J = Δ p = m Δ v {\displaystyle \mathbf {J} =\Delta \mathbf {p} =m\Delta \mathbf {v} }

ความสัมพันธ์ระหว่างแรงดลและโมเมนตัมนี้ใกล้เคียงกับนิยามของนิวตันในกฎข้อที่สอง[25]

แรงดลเป็นแนวคิดที่ใช้บ่อยในการวิเคราะห์การชนและผลกระทบจากการชน[26]

ระบบมวลแปรผัน

ดูบทความหลักที่: ระบบมวลแปรผัน

ระบบมวลแปรผัน เช่น เชื้อเพลิงของจรวจที่ถูกเผาไหม้และการปล่อนก๊าซที่ใช่แล้ว ซึ่งไม่ได้อยู่ในระบบปิดจึงทำให้มวลเป็นฟังก์ชันของเวลาในกฎข้อที่สอง[21] นั้นคือสมการต่อไปนี้ผิด[22]

F n e t = d d t [ m ( t ) v ( t ) ] = m ( t ) d v d t + v ( t ) d m d t ( w r o n g ) {\displaystyle \mathbf {F} _{\mathrm {net} }={\frac {\mathrm {d} }{\mathrm {d} t}}{\big [}m(t)\mathbf {v} (t){\big ]}=m(t){\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}+\mathbf {v} (t){\frac {\mathrm {d} m}{\mathrm {d} t}}\qquad \mathrm {(wrong)} }

เหตุที่สมการนี้ผิด สังเกตได้จากการที่สมการนี้ไม่เป็นไปตามความเสมอภาคแบบกาลิเลียน วัตถุมวลแปรผันที่มี F = 0 ในกรอบอ้างอิงหนึ่ง จะเห็นได้ว่ามี F ≠ 0 ในกรอบอ้างอิงอื่น[20] สมการที่ถูกต้องของการเคลื่อนที่ของวัตถุที่มีมวล m เปลี่ยนแปลงไปตามเวลาโดยการปล่อยออกไปหรือรับมวลเข้ามา จะได้จากการใช้กฎข้อที่สองกับระบบมวลคงที่ซึ่งประกอบด้วยวัตถุและมวลที่รับหรือปล่อยออกมา ผลลัพธ์คือ [20]

F + u d m d t = m d v d t {\displaystyle \mathbf {F} +\mathbf {u} {\frac {\mathrm {d} m}{\mathrm {d} t}}=m{\mathrm {d} \mathbf {v} \over \mathrm {d} t}}

โดยที่ u {\displaystyle \mathbf {u} } คือความเร็วของมวลที่ถูกปล่อยออกไปหรือรับเข้ามาเมื่อเทียบกับวัตถุ จากสมการนี้เราจะได้สมการของการเคลื่อนที่ของระบบมวลแปรผัน ตัวอย่างเช่น สมการจรวดซีออลคอฟสกี ภายใต้เงื่อนไขบางประการ ปริมาณ u d m d t {\displaystyle \mathbf {u} {\frac {\mathrm {d} m}{\mathrm {d} t}}} ทางซ้ายของสมการซึ่งแสดงการถ่ายโอนของโมเมนตัม หมายถึงแรง (แรงที่กระทำต่อวัตถุโดยมวลที่เปลี่ยนแปลงเช่นไอเสียจรวด) และรวมอยู่ในปริมาณ F {\displaystyle \mathbf {F} }

กฎการเคลื่อนที่ข้อที่ 3

ภาพประกอบกฎข้อที่สามของนิวตันซึ่งนักสเก็ตสองคนผลักดันกันและกัน ผู้เล่นสเกตบอร์ดคนแรกด้านซ้ายจะมีแรงตั้งฉาก N 12 {\displaystyle \mathbf {N} _{12}} ต่อผู้เล่นสเกตบอร์ดคนที่สอง ในทิศไปทางขวา และผู้เล่นสเกตบอร์ดคนที่สอง มีแรงตั้งฉาก N 21 {\displaystyle \mathbf {N} _{21}} ต่อผู้เล่นสเกตบอร์ดคนแรก ขนาดของแรงทั้งสองมีค่าเท่ากัน แต่มีทิศทางตรงกันข้าม คำอธิบายของกฎการเคลื่อนที่ข้อที่สามและแรงสัมผัส[27]

กฎข้อที่สามระบุว่า แรงทั้งหมดระหว่างสองวัตถุมีขนาดเท่ากันและทิศทางตรงกันข้าม ถ้าวัตถุ A ออกแรงกระทำ F A {\displaystyle \mathbf {F} _{\mathrm {A} }} กระทำต่อวัตถุ B แล้ว B จะออกแรง F B {\displaystyle \mathbf {F} _{\mathrm {B} }} กระทำต่อวัตถุ A พร้อม ๆ กัน และแรงทั้งสองมีค่าเท่ากันและมีทิศทางตรงกันข้าม F A = − F B {\displaystyle \mathbf {F} _{\mathrm {A} }=-\mathbf {F} _{\mathrm {B} }} [28] กฎข้อที่สามครอบคลุมแรงทั้งหมดที่มีอันตรกิริยาระหว่างวัตถุที่แตกต่างกัน[29][30] หรือบริเวณที่แตกต่างกันของวัตถุ และชี้ว่าไม่มีแรงที่ไม่ได้เกิดขึ้นพร้อมกันกับแรงที่มีขนาดเท่ากันและทิศตรงกันข้าม ในบางสถานการณ์ขนาดและทิศทางของแรงจะถูกกำหนดโดยหนึ่งในสองวัตถุกล่าวคือ แรงที่วัตถุ A กระทำต่อวัตถุ B เรียกว่า "การกระทำ" และแรงที่วัตถุ B กระทำต่อวัตถุ A เรียกว่า "ปฏิกิริยา" บางครั้งเราเรียกกฎข้อนี้ว่า กฎของแรงกิริยา - ปฏิกิริยา ซึ่ง F A {\displaystyle \mathbf {F} _{\mathrm {A} }} เรียกว่า "แรงกิริยา" และ F B {\displaystyle \mathbf {F} _{\mathrm {B} }} เรียกว่า "แรงปฏิกิริยา" ในสถานการณ์อื่น ๆ ขนาดและทิศทางของแรงกำหนดร่วมกันโดยทั้งสองวัตถุและไม่จำเป็นต้องระบุว่าแรงใดเป็น "แรงกิริยา" และอีกนัยหนึ่งเป็น "แรงปฏิกิริยา" แรงกิริยาและแรงปฏิกิริยาเกิดขึ้นพร้อม ๆ กันและไม่สำคัญว่าจะเรียกว่าแรงกิริยาทำอย่างไรและเรียกว่าแรงปฏิกิริยา แรงทั้งสองเป็นส่วนหนึ่งของปฏิสัมพันธ์เดี่ยวและไม่มีแรงอื่นอยู่ด้วย[28]

แรงสองแรงในกฎข้อที่สามของนิวตัน เป็นแรงประเภทเดียวกัน (เช่นถ้าถนนมีแรงเสียดทานมีทิศไปข้างหน้าบนยางรถยนต์ ย่อมมีแรงเสียดทานที่ยางรถยนต์ทำกลับไปบนถนน)

ตัวอย่างของกฎข้อที่สามของนิวตันจะเห็นได้จากสถานการณ์ของคนที่กำลังเดิน: เขาผลักดันกับพื้นและพื้นผลักดันต่อเขา ในทำนองเดียวกันยางของรถยนต์ดันกับถนนในขณะที่ถนนผลักดันกลับไปที่ยาง ในการว่ายน้ำคนจะมีปฏิสัมพันธ์กับน้ำและผลักดันน้ำให้ถอยหลังขณะที่น้ำดันคนไปข้างหน้าทั้งคนและน้ำโดยดันกันและกัน แรงปฏิกิริยาแสดงการเคลื่อนที่ในตัวอย่างเหล่านี้ แรงในตัวอย่างเหล่านี้ขึ้นอยู่กับแรงเสียดทาน ตัวอย่างเช่นคนหรือรถบนน้ำแข็งอาจไม่สามารถออกแรงกระทำเพื่อสร้างแรงปฏิกิริยาได้[31]

ใกล้เคียง

กฎการเคลื่อนที่ของนิวตัน กฎการเคลื่อนที่ของดาวเคราะห์ของเค็พเพลอร์ กฎการพาดหัวของเบ็ทเทอร์ริดจ์ กฎการปะทะ กฎการอนุรักษ์ กฎการเหนี่ยวนำของฟาราเดย์ กฎการแผ่รังสีความร้อนของเคียร์ชฮ็อฟ กฎการสลับที่ กฎการดูดกลืน กฎการมีตัวอย่างน้อย

แหล่งที่มา

WikiPedia: กฎการเคลื่อนที่ของนิวตัน http://www.lightandmatter.com/html_books/1np/ch04/... http://www.springerlink.com/content/j42866672t8635... http://members.tripod.com/~gravitee/axioms.htm http://www.ce.berkeley.edu/~coby/plas/pdf/book.pdf http://adsabs.harvard.edu/abs/1992CeMDA..53..227P http://adsabs.harvard.edu/abs/1992PhyEd..27..112H http://adsabs.harvard.edu/abs/2003Sc&Ed..12...45G http://ocw.mit.edu/courses/physics/8-01-physics-i-... http://plato.stanford.edu/entries/newton-principia... //doi.org/10.1007%2FBF00052611