โครงสร้างส่วนนอก ของ ระบบการทรงตัว

vestibular labyrinth

โครงสร้างในระบบประสาทส่วนนอกหลักของระบบการทรงตัวก็คือ vestibular labyrinth ที่เป็นส่วนของห้องหูชั้นใน (labyrinth) เป็นส่วนที่มีอะไรหลาย ๆ อย่างคล้ายกับคอเคลียของระบบการได้ยิน และจริง ๆ เป็นส่วนที่เชื่อมต่อติดกับคอเคลีย (ผ่านท่อคอเคลียและ ductus reuniens[5]) เหมือนกับคอเคลีย โครงสร้างนี้เกิดมาจาก otic placode ในช่วงยังเป็นตัวอ่อน และใช้เซลล์รับความรู้สึกประเภทเดียวกันคือ เซลล์ขน ในการแปรสิ่งเร้าทางกายภาพต่าง ๆ รวมทั้งการเคลื่อนไหวของศีรษะ ผลต่าง ๆ ของความเฉื่อยเนื่องจากแรงโน้มถ่วง และแรงสั่นจากพื้นเป็นต้น ให้เป็นกระแสประสาทเพื่อส่งไปยังสมอง[7]

โครงสร้างนี้ฝังอยู่ในกระดูกขมับและประกอบด้วยระบบหลอดกึ่งวงกลมและอวัยวะคือ otolith organs (คือ utricle และ saccule) โดยระบบหลอดกึ่งวงกลมเป็นตัวตรวจจับความเร่งในเชิงมุม/แบบหมุนของศีรษะ และ otolith organs เป็นตัวตรวจจับทั้งความเร่งในเชิงเส้นของศีรษะ และตำแหน่งศีรษะในเชิงสถิตเทียบกับแกนของแรงโน้มถ่วง[7]

vestibular labyrinth มีส่วนประกอบที่ให้สิ่งแวดล้อมทางไอออนที่จำเป็นในการทำงานของเซลล์ขน เยื่อที่มีลักษณะเป็นถุงของโครงสร้างและเป็นที่ฝังตัวของขนจากเซลล์ขน จะเต็มไปด้วยน้ำที่เรียกว่า endolypmph ซึ่งคล้ายกับน้ำภายในเซลล์เพราะมากไปด้วยไอออน K+ และมี Na+ น้อย เยื่อเช่นนี้เมื่อรวมกับเยื่อที่คล้าย ๆ กันในคอเคลียก็จะเรียกว่า เยื่อห้องหูชั้นใน (membranous labyrinth)ในระหว่างเยื่อนี้กับกระดูกห้องหูชั้นใน (osseous labyrinth) เป็นน้ำอีกอย่างหนึ่งที่เรียกว่า perilypmph ซึ่งคล้ายกับน้ำสมองร่วมไขสันหลัง เพราะมากไปด้วยไอออน Na+ และมี K+ น้อย[7]

เซลล์ขนมีขนที่ยื่นออกไปในเยื่อที่ว่านี้และอาบด้วยน้ำ endolypmph และมีส่วนฐานของเซลล์ที่อาบด้วยน้ำ perilypmph โดยมี tight junction ซึ่งผนึกส่วนผิวยอดเซลล์ และแยกน้ำสองอย่างนี้จากกัน[7]

เซลล์ขน

โดยคร่าว ๆ แล้ว utricle (ซ้าย) จะวางตามแนวนอน ส่วน saccule (กลาง) จะวางตามแนวตั้งลูกศรชี้ทิศทางการเบนขนที่เร้าเซลล์ขน เส้นดำทึบตรงกลางเป็นร่อง striolaซึ่งเป็นร่องโค้งที่วิ่งผ่ากลาง macula (ของ utricle หรือ saccule) ซึ่งขนยาวที่สุดของ stereocilia และ kinocilia จะเปลี่ยนทิศทาง คือสำหรับ utricle ขนจะเบนเข้าไปทาง striola และสำหรับ saccule ขนจะเบนออกจาก striola[8][9]
ดูข้อมูลเพิ่มเติมที่: เซลล์ขน

เซลล์ขนเป็นโครงสร้างพื้นฐานของการรับรู้ในระบบการทรงตัว โดยมีลักษณะและการทำงานคล้ายกับของเซลล์ขนในระบบการได้ยิน การเบนขนของเซลล์ (เช่นที่เกิดจากการเคลื่อนไหวหรือแรงโน้มถ่วง) แบบ stereocilia ไปทางคิโนซิเลียม จะเปิดช่องถ่ายโอนสัญญาณที่เปิดปิดโดยแรงกล/โดยสปริงที่ปลายขน ซึ่งทำให้เซลล์ลดขั้วและหลั่งสารสื่อประสาท และเพิ่มอัตราการส่งสัญญาณ/การยิงศักยะงานในเส้นประสาท ส่วนการเบนตรงกันข้ามจะปิดช่องถ่ายโอนสัญญาณ เพิ่มขั้วของเซลล์ และลดการส่งสัญญาณในเส้นประสาท การทำงานแบบเป็นสองเฟสของเซลล์หมายความว่า จะมีช่องขนซึ่งเปิดอยู่ตลอดเวลา และเซลล์ก็จะส่งสัญญาณไปยังสมองเรื่อย ๆ แม้เมื่อสิ่งเร้าไม่ได้เปลี่ยนไป[10]

การเรียงขนจากคิโนซิเลียมซึ่งเป็นขนยาวสุด ไปเป็น stereocilia ของเซลล์ขนโดยยาวลดลงตามลำดับ จะมีทิศทางต่างกันโดยเฉพาะ ๆ ในระบบ โดยในระบบหลอดกึ่งวงกลม เซลล์ทั้งหมดในกระเปาะอันเดียวกัน จะเรียงขนไปทางเดียวกัน ส่วนใน saccule และ utricle ของ otolithic organs เซลล์ขนสองกลุ่มที่แบ่งออกโดยร่องโค้ง striola จะมีขนเรียงทิศทางในตรงกันข้ามกัน ดังนั้น ระบบการทรงตัวรวม ๆ กัน จึงตอบสนองต่อการเคลื่อนที่ได้ในทุกทิศทาง[10]

แม้เซลล์ขนจะไวต่อการเคลื่อนไหวมาก คือเทียบกับการรู้การเคลื่อนไหวของยอดหอไอเฟลเพียงแค่ความกว้างนิ้วโป้งเดียว เซลล์ขนก็ยังสามารถปรับตัวได้อย่างรวดเร็วและอย่างต่อเนื่องต่อการเบนขน ซึ่งสำคัญมากใน otolithic organs เพราะทำให้สามารถรับรู้ความเร่งเล็ก ๆ น้อย ๆ แม้จะมีความเร่งคือแรงโน้มถ่วงสม่ำเสมอที่มากกว่าเป็นล้าน ๆ เท่า[11]

เซลล์สามารถปรับตัวไม่ว่าจะเป็นการเบนขนไปในทิศทางไหนแม้จะมีอัตราที่ต่างกัน เมื่อมัดขนเบนไปทางคิโนซิเลียม (เป็นการเร้า) แรงดึงที่ใยเชื่อมปลายตอนแรกจะตึงขึ้น แต่ต่อมาก็จะกลับสู่สภาพปกติ ซึ่งมีสมมติฐานว่า อาจเกิดเพราะจุดยึดของใยเชื่อมปลายที่ขนซึ่งยาวกว่าเลื่อนลง โดยอาศัยโปรตีนมอร์เตอร์ซึ่งควบคุมโดยแคลเซียม เช่น myosin ATPase ที่วิ่งขึ้นลงตามใย actin ภายในขน เมื่อมัดขนเบนไปทางตรงกันข้าม (เป็นการยับยั้ง) แรงดึงตอนแรงจะคลายลง แต่จะกลับสู่สภาพปกติเพราะจุดยึดของใยเชื่อมปลายกับขนที่ยาวกว่าเลื่อนขึ้นโดยอาศัยโปรตีนมอร์เตอร์เช่นกัน[11]

ระบบหลอดกึ่งวงกลม

ระบบหลอดกึ่งวงกลมตรวจจับการเคลื่อนไหวแบบหมุนไม่ว่าจะเป็นแบบเคลื่อนไหวเอง หรือแบบเนื่องกับปัจจัยภายนอก โดยมีหลอดกึ่งวงกลม (semicircular canal) เป็นองค์ประกอบหลักที่ทำให้สามารถรู้สึกการหมุนได้ เช่น เก้าอี้หมุน การเลี้ยวซ้ายขวา ก้มเก็บของ นอนตะแคง เป็นต้น[12][13]

โครงสร้างของระบบการทรงตัวในหูชั้นใน แสดงหลอดกึ่งวงกลม, เซลล์ขน, กระเปาะ (ampulla หรือ osseous ampulla), cupula (หรือ ampullary cupula), เส้นประสาท vestibular, และน้ำ endolymph

โครงสร้าง

ดูบทความหลักที่: หลอดกึ่งวงกลม

เนื่องจากโลกมี 3 มิติ ดังนั้น ระบบการทรงตัวจึงมีหลอดกึ่งวงกลม 3 หลอดในห้องหูชั้นในแต่ละข้างเพื่อตรวจจับการเคลื่อนไหวแบบหมุนโดยแยกเรียกว่า หลอดกึ่งวงกลมแนวนอน (horizontal) หรือ หลอดกึ่งวงกลมด้านข้าง (lateral), หลอดกึ่งวงกลมด้านหน้า (anterior) หรือ หลอดกึ่งวงกลมด้านบน (superior), และหลอดกึ่งวงกลมด้านหลัง (posterior) หรือ หลอดกึ่งวงกลมด้านล่าง (inferior)ส่วนหลอดกึ่งวงกลมด้านหน้าและด้านหลังรวมกันอาจจะเรียกว่า หลอดกึ่งวงกลมแนวตั้ง (vertical)

หลอดกึ่งวงกลมด้านหน้าและด้านหลังมีวงโค้งขึ้นไปในแนวตั้งและวางตั้งฉากกับกันและกัน ทั้งหลอดกึ่งวงกลมด้านหน้าและด้านหลังตั้งเป็นมุม 45 องศา กับระนาบแบ่งหน้าหลัง (frontal) และระนาบแบ่งซ้ายขวา (sagittal) หลอดกึ่งวงกลมด้านข้างมีวงโค้งไปทางข้าง ๆ โดยทำมุม 30 องศากับระนาบแนวนอน (horizontal) ทิศทางที่ต่าง ๆ กันเช่นนี้ทำให้สามารถตรวจจับการหมุนศีรษะในระนาบต่าง ๆ กัน โดยหลอดแต่ละอันจะไวต่อการหมุนสูงสุดในระนาบของตน ๆ[12][14]

  • การเคลื่อนไหวของของเหลวภายในหลอดกึ่งวงกลมแนวนอน ทำให้สามารถตรวจจับการหมุนหัวรอบแกนแนวตั้ง เช่นในการหมุนตัว
  • หลอดกึ่งวงกลมด้านหน้าและด้านหลังตรวจจับการหมุนหัวในระนาบแบ่งซ้ายขวา (sagittal) เช่นในการผงกหัว และในระนาบแบ่งหน้าหลัง (coronal) เช่นในการตีลังกาแบบล้อเกวียน

หลอดทั้งหมดเต็มไปด้วยน้ำ endolymph แต่ละข้างของหลอดจะเปิดเชื่อมกับ utricle โดยข้างหนึ่งจะมีป่องพองที่เรียกว่า กระเปาะ (ampulla) ซึ่งมีเซลล์ขนและเซลล์ค้ำจุนอยู่ที่เนินซึ่งเรียกว่า สันกระเปาะ (crista ampullaris) เซลล์ขนจะมีขนแบบ stereocilia และคิโนซิเลียมที่ยอดของเซลล์ โดยขนจะฝังอยู่ในโครงสร้างยืดหยุ่นได้คล้ายวุ้นที่เรียกว่า ampullary cupula ซึ่งยื่นออกจากสันกระเปาะขึ้นปิดกระเปาะไม่ให้น้ำไหลวนได้ เมื่อศีรษะหมุนในระนาบเดียวกับหลอด น้ำ endolymph จะล้าหลังหลอดที่เป็นกระดูกเพราะแรงเฉื่อย แล้วดัน cupula ซึ่งเบนขนที่ฝังอยู่ภายในโดยเบนไปทางทิศตรงกันข้ามการหมุนศีรษะ และทำให้เซลล์ขนเปลี่ยนการส่งกระแสประสาทไปยังสมอง แต่หลังจากหมุนอย่างต่อเนื่องโดยไม่เปลี่ยนความถี่ภายใน 25-30 วินาที น้ำก็จะตามหลอดทันเป็นการยุติการเบนขนใน cupula[12][13] เทียบกับความเร่งในเชิงเส้นซึ่งสร้างแรงดันที่ด้านทั้งสองของ cupula เท่า ๆ กัน จึงไม่การขยับเบนขน[13]

ไม่เหมือนเซลล์ขนใน utricle และ saccule เซลล์ขนที่สันกระเปาะจะมีคิโนซิเลียมในทิศทางเดียวกัน ซึ่งหมายความว่า เมื่อศีรษะหมุนในระนาบเดียวกันกับหลอด เซลล์ทั้งหมดในสันกระเปาะเดียวกันจะได้การเร้าแล้วเพิ่มการส่งสัญญาณไปทางสมอง หรือได้การยับยั้งแล้วลดการส่งสัญญาณ[13]

การทำงานเป็นระบบดันและดึง

ระบบดันและดึงของหลอดกึ่งวงกลม แสดงการทำงานเมื่อหมุนหัวในแนวนอนไปทางขวา ซึ่งเร้าหลอดกึ่งวงกลมแนวนอนด้านขวา และยับยั้งหลอดกึ่งวงกลมแนวนอนด้านซ้าย

หลอดกึ่งวงกลมแต่ละอันในศีรษะซีกซ้ายตั้งอยู่เกือบขนานกันกับหลอดที่คู่กันในซีกขวา และเซลล์ขนจะมีทิศทางของขนตรงข้ามกันโดยหลอดด้านข้างซีกซ้ายจะจับคู่กับหลอดด้านข้างซีกขวา หลอดด้านหน้าซีกซ้ายจับคู่กับหลอดด้านหลังซีกขวา และหลอดด้านหลังซีกซ้ายจับคู่กับหลอดด้านหน้าซีกขวาหลอดซ้ายขวาแต่ละคู่ จะทำงานคล้ายกับใช้แรงดันแรงดึง คือ เมื่อหลอดข้างหนึ่งส่งสัญญาณมากขึ้น (คือมีการเร้า) หลอดอีกข้างหนึ่งก็จะส่งสัญญาณน้อยลง (คือมีการยับยั้ง) แม้นัยตรงกันข้ามก็เช่นกัน[13]

ยกตัวอย่างเช่น หลอดแนวนอนทั้งสองข้างจะไวต่อการหมุนศีรษะในแนวนอน เมื่อหมุนศีรษะไปท้ายด้านขวา เซลล์ขนในหลอดทั้งสองข้างจะเบนไปทางด้านซ้าย ในหลอดซีกขวาซึ่งเป็นทิศการหมุนศีรษะ นี้เป็นการเร้าจึงเพิ่มการส่งสัญญาณ ในหลอดซีกซ้ายซึ่งมีทิศการวางขนตรงกันข้าม นี่เป็นการยับยั้งจึงลดการส่งสัญญาณ การหมุนศีรษะไปทางด้านซ้ายก็จะมีนัยกลับกัน[13]

ให้สังเกตว่า หลอดแนวตั้งจะจับคู่กันแบบไขว้ทแยง คือเมื่อหลอดด้านหน้าได้การกระตุ้น หลอดด้านหลังของศีรษะอีกซีกหนึ่งก็จะได้การยับยั้ง แม้นัยตรงกันข้ามก็เช่นกันเพราะหลอด 3 คู่อยู่ในระนาบต่าง ๆ กัน จึงจะได้รับการเร้าการยับยั้งในระนาบของตน ๆ หลอดด้านที่เป็นทิศทางการหมุนศีรษะจะได้การเร้า และหลอดที่คู่กันตรงกันข้ามจะได้การยับยั้ง ระบบดันและดึงนี้จึงทำให้สามารถรู้สึกการหมุนศีรษะได้ทั่วทุกทิศ[13]

กลไกโดยเป็นการแกว่งกวัดแบบหน่วง

กลไกของหลอดกึ่งวงกลมสามารถอธิบายได้โดยใช้การแกว่งกวัดแบบหน่วง (damped oscillation)[ต้องการอ้างอิง]ถ้าเราแทนมุมเบน (deflection) ของ cupula ด้วยตัวแปร θ {\displaystyle \theta } และแทนความเร็วของศีรษะด้วยตัวแปร q ˙ {\displaystyle {\dot {q}}} มุมเบนของ cupula โดยประมาณก็จะเป็น

θ ( s ) = α s ( T 1 s + 1 ) ( T 2 s + 1 ) q ˙ ( s ) {\displaystyle \theta (s)={\frac {\alpha s}{(T_{1}s+1)(T_{2}s+1)}}{\dot {q}}(s)}

α เป็นแฟกเตอร์เกี่ยวกับสัดส่วน ส่วน s เป็นความถี่ในมนุษย์ ค่าคงตัวทางเวลาคือ T1 และ T2 จะมีค่าประมาณ 3 มิลลิวินาทีและ 5 มิลลิวินาทีดังนั้น ในการเคลื่อนศีรษะซึ่งเป็นแบบฉบับ ที่มีความถี่ตั้งแต่ 0.1 เฮิรตซ์ จนถึง 10 เฮิรตซ์มุมเบนของ cupula จะมีสัดส่วนตามความเร็วของศีรษะนี้เป็นกฎธรรมชาติที่พอดีมาก เพราะความเร็วในการเคลื่อนไหวตาจะต้องเป็นไปในด้านตรงข้ามกับความเร็วศีรษะเพื่อให้เห็นอย่างชัดเจน

Otolithic organs

ในขณะที่หลอดกึ่งวงกลมตอบสนองต่อการหมุน อวัยวะที่เรียกว่า otolithic organs[upper-alpha 1] จะรับรู้ความเร่งเชิงเส้น เช่น ที่เกิดจากการเอียงหัวหรือการเคลื่อนที่ในแต่ละซีกร่างกาย มนุษย์มีอวัยวะ otolithic organs 2 ส่วนที่เรียกว่า utricle[upper-alpha 1] และ sacculeโดยทั้งสองจะมีหย่อมเซลล์ขนและเซลล์ค้ำจุนในรูปวงรีที่เรียกว่า macula ซึ่งยาวประมาณ 2-3 มม. และเรียงอยู่เป็นแนวนอนและแนวตั้งตามลำดับในมนุษย์ utricle จะมีเซลล์ขนประมาณ 30,000 ตัว และ saccule 16,000 ตัวเซลล์ขนแต่ละตัวจะมีขนแบบ stereocilia 40-70 เส้น และขนแบบคิโนซิเลียมที่ยาวสุดอีก 1 เส้นปลายของขนเหล่านี้จะฝังอยู่ในเยื่อ otolithic membrane[2][15]

เหนือเซลล์ขนและมัดขนจะเป็นชั้นคล้ายวุ้น และเหนือชั้นนี้จะมีเยื่อเส้นใยที่เรียกว่า otolithic membrane ซึ่งมีผลึกแคลเซียมคาร์บอเนตฝังอยู่ที่เรียกว่า otoconia (แปลว่า ผงหู) ผลึกยาวประมาณ 0.5-10 ไมโครเมตรและมีเป็นล้าน ๆ นี้ เป็นตัวให้ชื่อกับอวัยวะโดยคำว่า otolith มาจากภาษากรีกซึ่งแปลว่า หินหู ทำให้เยื่อหนักกว่าและเฉื่อยกว่าโครงสร้างและน้ำรอบ ๆ เป็นการเพิ่มความรู้สึกเกี่ยวกับแรงโน้มถ่วงและการเคลื่อนที่ ดังนั้น เมื่อศีรษะเอียง แรงโน้มถ่วงก็จะขยับเยื่อซึ่งเบนขนที่ฝังอยู่ในเยื่อ และเมื่อเกิดการเร่งในเชิงเส้นเช่นการเคลื่อนที่ มวลของเยื่อจะทำให้มันล้าหลังแล้วเบนขนที่ฝังอยู่เช่นกัน[2][15][16]

saccule วางอยู่ในแนวตั้ง และ utricle วางอยู่ในแนวนอน ทิศทางการเบนขนที่เร้าเซลล์จะเป็นไปตามร่อง striola บน macula ของอวัยวะทั้งสอง ซึ่งแสดงว่า utricle ตอบสนองต่อความเร่งในระนาบนอน เช่น การเอียงหัวและเคลื่อนที่ไปตามแนวราบ และ saccule ต่อความเร่งในระนาบตั้งถึงแม้ก็ตอบสนองต่อการเคลื่อนที่ไปทางหน้าหลังในระนาบแบ่งซ้ายขวาด้วย[16][15]เมื่อศีรษะตั้งตรง เยื่อ otolithic membrane จะกดลงตรง ๆ ที่เซลล์ขนและกระตุ้นเซลล์ขนเพียงเล็กน้อยแต่เมื่อศีรษะเอียง otolithic membrane จะห้อยแล้วเบนขน stereocilia และกระตุ้นเซลล์ขนการเปลี่ยนทิศทางของศีรษะจะกระตุ้นทั้ง utricle และ saccule ในหูทั้งสองทำให้ส่งกระแสประสาทในรูปแบบต่าง ๆ กันสมองจะแปลทิศทางของศีรษะโดยเปรียบเทียบการส่งสัญญาณรวม ๆ กันจาก utricle บวก saccule, ข้อมูลจากตา, และข้อมูลจากหน่วยรับแรงยืดที่คอ แล้วจึงสามารถบอกได้ว่าเป็นเพียงแค่ศีรษะหรือเป็นทั้งร่างกายที่เอียง[2]

สั้น ๆ ก็คือ otolithic organ ทำให้สามารถรู้สึกได้ว่า กำลังเร่งไปข้างหน้า ข้างหลัง ข้างซ้าย ข้างขวา บน หรือล่าง เร็วแค่ไหน[17]หรือสามารถรู้ความเร่งในเชิงเส้น และตำแหน่งสถิตของศีรษะเทียบกับแกนของแรงโน้มถ่วง[7]

ผลที่ได้เช่นกันต่อเซลล์ขนจากการเอนศีรษะและการเร่งเชิงเส้น อาจจะทำให้คิดได้ว่า สิ่งเร้าต่าง ๆ บางอย่างอาจทำให้รู้สึกเช่นเดียวกันเมื่อปิดตาหรือเมื่ออยู่ในที่มืด แต่ก็ปรากฏว่ามนุษย์สามารถแยกแยะสิ่งเร้าต่าง ๆ เหล่านั้นได้ โดยอาจเป็นเพราะได้ข้อมูลรวม ๆ จากอวัยวะระบบนี้บวกกับระบบหลอดกึ่งวงกลม ระบบการเห็น และระบบรับความรู้สึกทางกาย[16][15]เทียบกับการแปลผลสัญญาณการหมุนตัวจากหลอดกึ่งวงกลมซึ่งตรงไปตรงมา การแปลผลจาก otolithic organs นั้นจะยากกว่าเนื่องจากว่า แรงโน้มถ่วงของโลกก็เป็นความเร่งเชิงเส้นอีกประเภทหนึ่ง ดังนั้น สมองจึงต้องแยกแยะสัญญาณที่มาจากอวัยวะว่า เกิดขึ้นจากการเคลื่อนไหวเชิงเส้น หรือเกิดจากแรงโน้มถ่วงซึ่งมนุษย์ก็สามารถทำการนี้ได้ดี แต่กลไกทางประสาทที่แยกแยะความเร่งสองอย่างนี้ ก็ยังไม่เป็นที่เข้าใจกันดี[ต้องการอ้างอิง]

มนุษย์สามารถรู้สึกถึงหัวที่เอียงและความเร่งเชิงเส้นทั่วทุกทิศแม้ในที่มืดเพราะทั้งทิศทางการวางตัวต่าง ๆ ของ otolithic organs และทิศทางที่ต่างกันอย่างต่อเนื่องของกลุ่มเซลล์ขนสองกลุ่มที่ข้างทั้งสองของร่องโค้ง striola ซึ่งวิ่งผ่ากลาง maculaคือ เซลล์ขนที่อยู่ในข้างตรงข้ามกันจะเบนเลียนกันเหมือนเงาสะท้อนในกระจก ดังนั้น เมื่อข้างหนึ่งได้การกระตุ้น อีกข้างหนึ่งก็จะได้การยับยั้งผลการเร้าการยับยั้งตรงข้ามกันที่ได้จากการเอียงศีรษะไปทางหนึ่งหรือได้จากแรงเร่ง ก็จะทำให้เกิดสัญญาณความรู้สึกที่ต่าง ๆ กันจากเซลล์ขนของหูทั้งสอง ทำให้สามารถบอกได้ว่า ศีรษะเอียงหรือมีแรงเร่งไปทางไหน[15][18][19]

หลังจากนั้น ก็จะมีการส่งข้อมูลความรู้สึกนั้นไปยังสมอง ซึ่งอาจจะตอบสนองด้วยการส่งสัญญาณการแก้ไขไปยังระบบประสาทหรือระบบกล้ามเนื้อเพื่อให้ทั้งการทรงตัว[upper-alpha 2]และการรับรู้ดำเนินต่อไปได้[20]

ใกล้เคียง

ระบบการทรงตัว ระบบการได้ยิน ระบบการเห็น ระบบกำหนดตำแหน่งบนโลก ระบบการลงคะแนน ระบบการนำไฟฟ้าหัวใจ ระบบกึ่งประธานาธิบดี ระบบการลงคะแนนแบบคะแนนรวม ระบบการลงคะแนนแบบผสม ระบบการออกเสียงภาษาบาลี

แหล่งที่มา

WikiPedia: ระบบการทรงตัว http://www.tutis.ca/Senses/L10Balance/L10Balance.p... http://www.physpharm.fmd.uwo.ca/undergrad/senseswe... http://www.blackwellpublishing.com/products/journa... http://www.dizzytimes.com/ http://www.emedicine.com/oph/topic339.htm# http://www.headimpulse.com http://www.sciencedirect.com/science/article/pii/S... http://link.springer.com/article/10.1007%2Fs00221-... http://nba.uth.tmc.edu/neuroscience/s2/chapter10.h... http://drivingassessment.uiowa.edu/DA2003/pdf/30_C...