โครงสร้าง ของ ระบบการได้ยิน

หูชั้นนอก

ดูบทความหลักที่: หูชั้นนอก

กระดูกอ่อนที่อยู่รอบ ๆ ช่องหูเรียกว่า ใบหู (pinna, auricle, auricula)คลื่นเสียงจะสะท้อนและเปลี่ยนไปเมื่อกระทบใบหู โดยความเปลี่ยนแปลงจะให้ข้อมูลเพิ่มเพื่อช่วยสมองกำหนดทิศทางของแหล่งเสียงมนุษย์ได้ยินเสียงรอบ ๆ ศีรษะได้ไม่เท่ากัน จะมีเสียงในความถี่บางอย่างและความดังบางระดับ ที่บางตำแหน่งจะได้ยินดีกว่า การรู้ทิศทางของเสียงโดยเฉพาะในแนวดิ่ง ขึ้นอยู่กับรูปร่างของใบหูอย่างสำคัญ[2]ต่อจากนั้น คลื่นเสียงก็จะเข้าไปยังช่องหู (auditory canal) ซึ่งเป็นท่อที่ดูเหมือนไม่ซับซ้อนแต่ช่องหูจะขยายเสียงระหว่างความถี่ 3-12 กิโลเฮิรตซ์ที่สุดของช่องหูเป็นแก้วหู (eardrum, tympanic membrane) ซึ่งเป็นจุดเริ่มต้นของหูชั้นกลาง (middle ear)

กระดูกหู (ossicles) ในโพรงหูส่วนกลาง (tympanic cavity)

หูชั้นกลาง

ดูบทความหลักที่: หูชั้นกลาง

คลื่นเสียงจะวิ่งผ่านช่องหูเข้าไปกระทบกับแก้วหู (ซึ่งใหญ่ประมาณ 9 มม.[2])แล้วจะวิ่งผ่านหูชั้นกลางซึ่งเต็มด้วยอากาศผ่านลำดับกระดูกหู (ossicles) ที่ละเอียดอ่อน คือ กระดูกค้อน (malleus) กระดูกทั่ง (incus) และกระดูกโกลน (stapes)

กระดูกเหล่านี้ทำงานเหมือนคานงัดและลูกสูบ ที่แปลงแรงสั่นของแก้วหูที่มีความดันต่ำ ให้เป็นแรงสั่นมีความดันสูงเมื่อไปถึงช่องหูชั้นในรูปหอยโข่ง/คอเคลีย (cochlea) ที่เล็กกว่าซึ่งเรียกว่าช่องรูปไข่ (oval window) หรือ vestibular windowจุดงัดเริ่มต้นคือกระดูกค้อนซึ่งเชื่อมกับแก้วหู เป็นตัวงัดกระดูกทั่ง ซึ่งจะงัดกับกระดูกโกลน ที่ทำหน้าที่คล้ายกับลูกสูบ โดยปลายจะปิดเชื่อมกับช่องรูปไข่ของคอเคลีย[2]ความดันเสียง (แรงสั่น) ที่สูงกว่าที่ช่องรูปไข่ เป็นเรื่องจำเป็นเพราะว่า หูชั้นในเลยช่องรูปไข่เข้าไปเป็นน้ำ ไม่ใช่อากาศเหมือนหูชั้นกลางและหูชั้นนอกกระดูกค้อนและกระดูกทั่งเป็นส่วนเหลือค้างจากกระบวนการวิวัฒนาการ โดยเป็นส่วนของกระดูกขากรรไกรของสัตว์เลื้อยคลานที่เป็นบรรพบุรุษ[2]

รีเฟล็กซ์สเตปีเดียส (stapedius reflex) ที่กล้ามเนื้อหูชั้นกลางจะช่วยป้องกันหูชั้นในจากความเสียหาย โดยลดการส่งต่อพลังงานเสียงเมื่อกล้ามเนื้อสเตปีเดียสเกิดทำงานตอบสนองต่อเสียงดัง (ที่ประมาณ 70-100 เดซิเบล SPL)หูชั้นกลางยังส่งข้อมูลของเสียงในรูปคลื่นเสียงซึ่งจะเปลี่ยนเป็นกระแสประสาทที่คอเคลียของหูชั้นใน

หูชั้นในรูปหอยโข่ง
(Cochlea)
ผังผ่าคอเคลียออกตามยาว (longitudinal section) ส่วนที่เรียกว่า "cochlear duct" หรือ "scala media" ขึ้นป้ายว่า ductus cochlearis ที่ขวามือ
อภิธานศัพท์กายวิภาคศาสตร์

หูชั้นใน

ดูบทความหลักที่: หูชั้นใน

หูชั้นในประกอบด้วยอวัยวะรูปหอยโข่ง/คอเคลีย (cochlea) (ในมนุษย์ มีเส้นผ่าศูนย์กลางประมาณ 9 มม.[2]) และโครงสร้างที่ไม่เกี่ยวกับการได้ยินเสียงอื่น ๆอวัยวะรูปหอยโข่งจะมีส่วน 3 ส่วนที่เต็มไปด้วยน้ำ โดยแรงดันที่เยื่อกั้นหูชั้นใน (basilar membrane) ซึ่งแบ่งส่วนของโครงสร้าง จะเป็นตัวขับคลื่นในน้ำสิ่งที่น่าสังเกตอย่างหนึ่งก็คือ ท่อที่เรียกว่า "cochlear duct/partition" หรือ "scala media" จะมี endolymph ซึ่งเป็นน้ำที่มีสารประกอบคล้ายกับของเหลวในเซลล์อวัยวะของคอร์ติอยู่ในท่อนี้บนเยื่อกั้นหูชั้นใน และมีหน้าที่แปลงคลื่นกลไปเป็นสัญญาณไฟฟ้าอีกสองช่องที่เหลือเรียกว่า scala tympani และ scala vestibuliซึ่งอยู่ในห้องหูชั้นใน (labyrinth) ที่เป็นกระดูก และเต็มไปด้วยของเหลวที่เรียกว่า perilymph ซึ่งมีสารประกอบคล้ายกับน้ำหล่อสมองไขสันหลังความแตกต่างทางเคมีของ endolymph และ perilymph เป็นเรื่องสำคัญต่อการทำงานของหูชั้นใน ซึ่งอาศัยความแตกต่างทางศักย์ไฟฟ้าของไอออน โพแทสเซียมและแคลเซียม(endolymph มีศักย์ไฟฟ้า 80-90 mV มากกว่า perilymph เพราะมีไอออนโพแทสเซียมมากกว่าแคลเซียม[3])

ถ้าคลี่อวัยวะรูปหอยโข่งออก(ในมนุษย์หญิงจะยาวประมาณ 33 มม. และชาย 34 มม.[4])ก็จะพบส่วนต่าง ๆ ที่ตอบสนองต่อความถี่เสียงโดยเฉพาะ ซึ่งเป็นปกติของสัตว์เลี้ยงลูกด้วยนมทั้งหมดและสัตว์มีกระดูกสันหลังโดยมากโดยส่วนที่ตอบสนองต่อความถี่สูงสุดจะอยู่ใกล้ช่องรูปไข่ (oval window) มากที่สุด ที่ตอบสนองต่อความถี่ต่ำสุดจะอยู่ไกลสุด และความถี่ที่ตอบสนองจะอยู่ในรูปฟังก์ชันยกกำลังในสัตว์บางสปีชีส์ เช่น ค้างคาวและโลมา จะมีบางความถี่ที่ตอบสนองเป็นพิเศษเพื่อสนับสนุนการใช้โซนาร์

อวัยวะของคอร์ติ อยู่ที่ scala media

อวัยวะของคอร์ติ

ดูบทความหลักที่: อวัยวะของคอร์ติ

อวัยวะของคอร์ติเป็นแถบเยื่อบุผิวรับประสาทสัมผัส (sensory epithelium) ซึ่งวิ่งไปตามยาวในส่วน scala media ของอวัยวะรูปหอยโข่ง (cochlea) ทั้งหมดเซลล์ขนของมันแปลงคลื่นกลในของเหลวไปเป็นสัญญาณประสาทการทำงานของเซลล์ประสาทจำนวนมหาศาลเริ่มที่ขั้นแรกนี้จากนี่ การประมวลข้อมูลเสียงต่อ ๆ ไปจะทำให้ทั้งได้ยินและเกิดปฏิกิริยาต่อการได้ยิน

เซลล์ขนในหูชั้นในของกบ

เซลล์ขน

ดูบทความหลักที่: เซลล์ขน

เซลล์ขน (Hair cell) เป็นเซลล์รูปแท่ง แต่ละเซลล์มีซีเลีย (cilia) ที่ทำงานโดยเฉพาะ ๆ ประมาณ 100-200 อันด้านบนเหมือนขน ซึ่งเป็นลักษณะที่ให้ชื่อของเซลล์(ในมนุษย์ คอเคลียแต่ละข้างจะมีเซลล์ขนรวมกันประมาณ 16,000 เซลล์[5])มีเซลล์ขน 2 ประเภท คือ

  • เซลล์ขนด้านใน (Inner hair cell, IHC) เป็นตัวรับแรงกล (mechanoreceptor) เพื่อการได้ยิน โดยเซลล์จะแปรความสั่นเนื่องจากเสียงไปเป็นกระแสไฟฟ้าในใยประสาท (nerve fiber) ส่งไปที่สมอง (ในมนุษย์ คอเคลียแต่ละข้างจะมี IHC ประมาณ 3,500 เซลล์[6])
  • เซลล์ขนด้านนอก (Outer hair cell, OHC) เป็นโครงสร้างที่ทำให้เคลื่อนไหวได้ คือ พลังงานเสียงทำให้เซลล์เหล่านี้เปลี่ยนรูป ซึ่งเป็นการขยายเสียงตามความถี่โดยเฉพาะ ๆ (ในมนุษย์ คอเคลียแต่ละข้างจะมี OHC ประมาณ 12,000 เซลล์[6])

มีเยื่อ tectorial membrane (TM) ที่วางลงเบา ๆ บนซีเลียที่ยาวที่สุดของ IHC เยื่อจะขยับตามวงจร (หรือคาบ) ของเสียงแล้วเบนซีเลีย ซึ่งทำให้เซลล์ตอบสนองทางไฟฟ้าด้วยการสร้าง Graded potential (ศักย์มีหลายระดับ) โดยเหมือนกับเซลล์รับแสงในตา คือไม่ได้สร้างศักยะงาน (action potential) เหมือนนิวรอนทั่ว ๆ ไป และศักย์แบบนี้ไม่ได้จำกัดโดยการ "มีหรือไม่มี" (all or none) เหมือนศักยะงาน

ถึงตรงนี้ อาจจะมีคำถามว่า แล้วการขยับขนทำให้เกิดความต่างศักย์ได้อย่างไรแบบจำลองในปัจจุบันเสนอว่า ซีเลียจะเชื่อมกันโดยใยเชื่อมปลาย (tip link) ซึ่งเป็นโครงสร้างที่เชื่อมปลายของซีเลียอันหนึ่งไปยังอีกอันหนึ่งดังนั้น ไม่ว่าจะเป็นการดึงหรือดัน ใยเชื่อมปลายอาจเปิดช่องไอออนแล้วทำให้เกิดศักย์ไฟฟ้าในเซลล์ขนงานวิจัยปี 2553 แสดงว่า โปรตีน CDH23 (Cadherin-23) ร่วมกับ PCDH15 (Protocadherin-15) เป็นโมเลกุลของใยเชื่อมปลาย[7]เชื่อว่า มีมอเตอร์ขับโดยแคลเซียมที่ทำให้ใยสั้นลงเพื่อทำให้ตึงอีกซึ่งทำให้รับรู้เสียงที่ดังนานได้[8]

นิวรอน

เซลล์ขนด้านใน (IHC) จะส่งสัญญาณให้ใยประสาทของนิวรอนนำเข้า (Afferent neuron) ผ่านไซแนปส์โดยใช้สารสื่อประสาทกลูตาเมต และนิวรอนนำเข้าจะส่งสัญญาณไปยังนิวรอนในระบบประสาทการได้ยินปฐมภูมิต่อไปมี IHC ในอวัยวะรูปหอยโข่งน้อยกว่านิวรอนนำเข้ามาก ดังนั้น เซลล์ขนแต่ละเซลล์จะเชื่อมกับใยประสาทนำเข้าหลายเส้น (คือนิวรอนนำเข้าหลายตัว)โดยใยประสาทจะเป็นของนิวรอนที่เป็นส่วนของโสตประสาท (auditory nerve) ซึ่งจะรวมเข้ากับ vestibular nerve กลายเป็น vestibulocochlear nerve หรือประสาทสมอง (cranial nerve) หมายเลข VIII[9]ตำแหน่งที่เยื่อกั้นหูชั้นใน (basilar membrane) ให้ข้อมูลกับใยประสาทนำเข้าเส้นใดเส้นหนึ่งโดยเฉพาะสามารถพิจารณาได้ว่าเป็นลานรับสัญญาณ (receptive field) ของมัน

มีใยประสาทนำออกจากสมองไปยังคอคเคลียที่มีบทบาทในการได้ยินเสียง แต่ว่า บทบาทนี้ยังไม่ชัดเจนไซแนปส์ของใยประสาทนำออกไปสุดที่ทั้งตัวเซลล์ขนนอก (OHC) และที่เดนไดรต์ของใยประสาทนำเข้าที่อยู่ใต้ IHC

วิถีประสาทการได้ยิน

ใกล้เคียง

ระบบการทรงตัว ระบบการได้ยิน ระบบการเห็น ระบบกำหนดตำแหน่งบนโลก ระบบการลงคะแนน ระบบการนำไฟฟ้าหัวใจ ระบบกึ่งประธานาธิบดี ระบบการลงคะแนนแบบคะแนนรวม ระบบการลงคะแนนแบบผสม ระบบการออกเสียงภาษาบาลี

แหล่งที่มา

WikiPedia: ระบบการได้ยิน http://linkinghub.elsevier.com/retrieve/pii/S0166-... http://linkinghub.elsevier.com/retrieve/pii/S0959-... http://link.springer.com/referenceworkentry/10.100... http://www.columbia.edu/cu/biology/courses/w3004/r... http://www.meddean.luc.edu/lumen/meded/GrossAnatom... http://web.mit.edu/hst.722/www/Topics/DCN/YoungDav... http://neuroscience.uth.tmc.edu/s2/chapter13.html http://thalamus.wustl.edu/course/audvest.html //www.ncbi.nlm.nih.gov/pmc/articles/PMC2949085 //www.ncbi.nlm.nih.gov/pmc/articles/PMC3418221