ชีวสังเคราะห์ ของ วิตามินซี

สัตว์และพืชโดยมากสามารถสังเคราะห์วิตามินซีผ่านขั้นตอนต่าง ๆ ที่อาศัยเอนไซม์ ซึ่งเปลี่ยนมอโนแซ็กคาไรด์ให้เป็นวิตามินซี แต่ยีสต์ก็ไม่ได้ผลิต l-ascorbic acid แต่ผลิตสเตอริโอไอโซเมอร์ (stereoisomer) ของมัน[upper-alpha 10] คือ erythorbic acid[119]

ในพืช การสังเคราะห์ทำโดยเปลี่ยนน้ำตาล mannose หรือ galactose ให้เป็นกรดแอสคอร์บิก[120][121]

ในสัตว์ วัสดุตั้งต้นก็คือกลูโคสในสปีชีส์ที่สังเคราะห์แอสคอร์เบตในตับ (รวมทั้งสัตว์เลี้ยงลูกด้วยนมและนกเกาะคอน) กลูโคสจะสกัดจากไกลโคเจนจึงเป็นกระบวนการที่อาศัยการสลายไกลโคเจน (glycogenolysis)[122]ในสัตว์ที่ไม่สามารถสังเคราะห์วิตามินซี เอนไซม์ คือ l-gulonolactone oxidase (GULO) ซึ่งเป็นตัวเร่งปฏิกิริยาขั้นสุดท้ายในกระบวนการชีวสังเคราะห์ จะกลายพันธุ์ไปมากจนทำการไม่ได้[123][124][125][126]

ในสัตว์ต่าง ๆ

ชีวสังเคราะห์ของวิตามินซีในสัตว์มีกระดูกสันหลัง

ชีวสังเคราะห์ของกรดแอสคอร์บิกในสัตว์มีกระดูกสันหลังเริ่มจากการสร้าง UDP glucuronic acid[upper-alpha 11]ซึ่งเกิดเมื่อ UDP-glucose ผ่านกระบวนการออกซิเดชัน 2 ครั้งที่เร่งปฏิกิริยาด้วยเอนไซม์ UDP-glucose 6-dehydrogenaseซึ่งใช้โคแฟกเตอร์ NAD+ เป็นตัวรับอิเล็กตรอนเอนไซม์ transferase คือ UDP-glucuronate pyrophosphorylase จะกำจัด UMP และ glucuronokinase โดยมีโคแฟกเตอร์คือ ADP เป็นการกำจัดฟอสเฟตสุดท้ายทำให้กลายเป็น d-glucuronic acidกลุ่มแอลดีไฮด์ของสารประกอบนี้จะรีดิวซ์เป็นแอลกอฮอล์ปฐมภูมิ (primary alcohol)[upper-alpha 12] ด้วยเอนไซม์ glucuronate reductase และโคแฟกเตอร์ NADPH โดยมีผลผลิตเป็น l-gulonic acidซึ่งตามด้วยการเกิดแล็กโทน (lactone) อาศัยเอนไซม์แบบ hydrolase คือ gluconolactonase โดยแล็กโทนจะอยู่ระหว่างกลุ่มคาร์บอนิล (carbonyl) ที่เชื่อมกับ C1 กับกลุ่มไฮดรอกซิลที่เชื่อมกับ C4แล้ว l-Gulonolactone ก็จะทำปฏิกิริยากับออกซิเจนโดยมีเอนไซม์ l-gulonolactone oxidase (ซึ่งทำการไม่ได้ในมนุษย์และไพรเมตอันดับย่อย Haplorrhini[upper-alpha 13]อื่น ๆ) เป็นตัวเร่งปฏิกิริยาและมีโคแฟกเตอร์คือ FAD+ปฏิกิริยานี้สร้าง 2-oxogulonolactone (2-keto-gulonolactone) ซึ่งเกิดปฏิกิริยา enolization (ที่กลุ่ม keto เปลี่ยนเป็น enol) เอง (spontaneous) กลายเป็นกรดแอสคอร์บิก[129][130][113]

สัตว์เลี้ยงลูกด้วยนมบางอย่างได้เสียสมรรถภาพการสังเคราะห์วิตามินซี รวมทั้งไพรเมตกลุ่มซิเมียน[upper-alpha 14]และทาร์เซียร์ ซึ่งรวมกันเป็นอันดับย่อยของไพรเมตกลุ่มหนึ่งในสองกลุ่มคือ Haplorrhiniโดยรวมมนุษย์อยู่ด้วยกลุ่มไพรเมตที่มีลักษณะ "ดั้งเดิม" กว่า คือ Strepsirrhini ยังมีสมรรถภาพผลิตวิตามินซี ค้างคาวโดยมากก็สังเคราะห์ไม่ได้[123]และสปีชีส์ในวงศ์ Caviidae (อันดับสัตว์ฟันแทะ) ซึ่งรวมหนูตะเภาและ capybara (Hydrochoerus hydrochaeris เป็นสัตว์ฟันแทะขนาดใหญ่สุดในโลกที่อยู่ในอเมริกาใต้) ก็สังเคราะห์ไม่ได้ แต่สัตว์ฟันแทะอื่น ๆ รวมทั้งหนูและหนูหริ่งก็สังเคราะห์ได้[131]

สัตว์เลื้อยคลานและนกในอันดับที่เก่าแก่กว่าจะสังเคราะห์กรดแอสคอร์บิกในไตส่วนนกในอันดับที่ใหม่กว่าและสัตว์เลี้ยงลูกด้วยนมโดยมากสังเคราะห์ในตับ[121]มีสปีชีส์นกเกาะคอนจำนวนหนึ่งที่สังเคราะห์ไม่ได้เหมือนกัน โดยไม่ได้เป็นพันธุ์ญาติกันที่ชัดเจนอีกด้วยจึงมีทฤษฎีว่า สมรรถภาพเช่นนี้สูญไปในนกหลายครั้งหลายหนต่างหาก ๆ[132]โดยเฉพาะก็คือ สมมุติว่าในกรณีสองกรณี การสังเคราะห์วิตามินซีได้สูญไปแล้วภายหลังกลับได้มาใหม่[133]สมรรภาพการสังเคราะห์วิตามินซียังสูญไปในปลา 96% (คือกลุ่ม teleosts)[132]ค้างคาววงศ์ต่าง ๆ ที่ได้ตรวจสอบ (ในอันดับ Chiroptera) รวมทั้งวงศ์ที่กินแมลงและผลไม้ สังเคราะห์วิตามินซีไม่ได้ มีการตรวจพบเอนไซม์ gulonolactone oxidase (ที่ใช้ในการสังเคราะห์ขั้นตอนสุดท้าย) จำนวนน้อยมาก (trace) ในค้างคาว 1 สปีชีส์ในบรรดา 34 สปีชีส์ซึ่งอยู่ในวงศ์ 6 วงศ์ที่ตรวจ[134]มีค้างค้าวอย่างน้อย 2 สปีชีส์ คือ Rousettus leschenaultii ซึ่งกินผลไม้และค้างคาวหน้ายักษ์ทศกัณฐ์ (Hipposideros armiger) ซึ่งกินแมลง ที่ยังมี (หรือได้คืน) สมรรถภาพการผลิตวิตามินซี[135][136]

สปีชีส์บางส่วนเหล่านี้ (รวมทั้งมนุษย์) สามารถแก้ขัดการสูญสมรรถภาพโดยนำวิตามินซีที่ออกซิไดซ์แล้วกลับคืนไปใช้ใหม่ได้[137]

ไพรเมตกลุ่มซิเมียน[upper-alpha 14] (ที่ผลิตวิตามินซีไม่ได้) โดยมากบริโภควิตามินซีในปริมาณ 10-20 เท่ามากกว่าที่รัฐบาลต่าง ๆ แนะนำให้มนุษย์บริโภค[138]ความขัดแย้งเช่นนี้เป็นมูลฐานของข้อถกเถียงเกี่ยวกับระดับอาหารที่แนะนำในปัจจุบันซึ่งมีผู้แก้ว่า มนุษย์สงวนรักษาวิตามินซีที่ได้ในอาหารไว้ได้ดีมาก และสามารถรักษาระดับวิตามินซีในเลือดเทียบเท่ากับซิเมียนอื่น ๆ แม้จะได้วิตามินซีจากอาหารน้อยกว่า โดยอาจเป็นเพราะนำวิตามินซีที่ออกซิไดซ์แล้วกลับไปใช้ใหม่ได้[137]

ในพืชต่าง ๆ

ชีวสังเคราะห์ของวิตามินซีในพืช

มีวิถีการสังเคราะห์วิตามินซีหลายอย่างในพืชโดยมากได้มาจากผลิตผลของวิถีการสลายกลูโคสและวิถีทางเคมีอื่น ๆตัวอย่างหนึ่งก็คือที่ต้องผ่านผนังเซลล์อันเป็นพอลิเมอร์ของพืช[123]สารตั้งต้นที่เป็นหลักของการสังเคราะห์วิตามินซีในพืชดูเหมือนจะเป็น l-galactoseซึ่งทำปฏิกิริยากับเอนไซม์ l-galactose dehydrogenase เป็นปฏิกิริยาที่เปิดวงแหวนแล็กโทน แล้วปิดอีกโดยแล็กโทนจะอยู่ระหว่างกลุ่มคาร์บอนิลที่อะตอม C1 และกลุ่มไฮดรอกซิลที่ C4 โดยกลายเป็น l-galactonolactone[130] ซึ่งก็จะมีปฏิกิริยากับ mitochondrial flavoenzyme คือ l-galactonolactone dehydrogenase[139]โดยมีผลิตผลเป็นกรดแอสคอร์บิก[130]

ในผักโขม l-ascorbic acid มีผลป้อนกลับเชิงลบต่อ l-galactose dehydrogenase[140]เอ็มบริโอของพืชใบเลี้ยงคู่จะหลั่งกรดแอสคอร์บิกออกโดยเป็นกลไกลรีดิวซ์คอมเพล็กซ์เหล็กที่อยู่นอกเซลล์ เป็นขั้นตอนที่จำเป็นเพื่อให้ขนส่งเหล็กเข้ามาในเซลล์ได้[upper-alpha 15]

พืชทั้งหมดสามารถสังเคราะห์กรดแอสคอร์บิกโดยมีหน้าที่เป็นโคแฟกเตอร์สำหรับเอนไซม์ที่เกี่ยวข้องกับการสังเคราะห์ด้วยแสง การสังเคราะห์ฮอร์โมนพืช ทำหน้าที่เป็นสารต้านอนุมูลอิสระ และเป็นตัวปฏิรูปสารต้านอนุมูลอิสระอื่น ๆ[142]พืชมีวิถีการสังเคราะห์วิตามินซีหลายอย่าง วิถีหลักจะเริ่มด้วยกลูโคส ฟรักโทส หรือ mannose ซึ่งล้วนเป็นน้ำตาลที่ไม่ซับซ้อน แล้วดำเนินต่อไปเป็น l-galactose, l-galactonolactone และกรดแอสคอร์บิก[142][143]โดยมีกระบวนการควบคุมแบบป้อนกลับ คือ การมีกรดแอสคอร์บิกจะยับยั้งเอนไซม์ที่ใช้ในการสังเคราะห์[144]กระบวนการนี้เป็นไปตามจังหวะประจำวัน (diurnal rhythm) โดยมีเอนไซม์สูงสุดในตอนเช้าเพื่อสนับสนุนการสังเคราะห์ด้วยแสงในช่วงกลางวันที่แสงจ้าของพระอาทิตย์ทำให้ต้องมีกรดแอสคอร์บิกในความเข้มข้นสูง[143]วิถีการสังเคราะห์ย่อยอื่น ๆ อาจจะมีที่ส่วนต่าง ๆ ของพืชอย่างเฉพาะเจาะจงซึ่งอาจเหมือนกับวิถีการสังเคราะห์ในสัตว์ (รวมทั้ง GLO enzyme) หรือเริ่มด้วย inositol แล้วดำเนินเป็น l-galactonic acid แล้วเป็น l-galactonolactone แล้วจึงได้ผลเป็นกรดแอสคอร์บิก[142]

วิวัฒนาการ

กรดแอสคอร์บิกเป็นโคแฟกเตอร์ของเอนไซม์ที่สามัญในสัตว์เลี้ยงลูกด้วยนม ใช้ในการสังเคราะห์คอลลาเจน เป็นตัวรีดิวซ์ที่มีกำลังซึ่งสามารถกำจัดกลุ่มออกซิเจนที่ไวปฏิกิริยา (reactive oxygen species[upper-alpha 16], ROS) ได้เร็ว เพราะมีหน้าที่สำคัญเยี่ยงนี้ จึงน่าแปลกใจว่าสมรรถภาพในการผลิตจึงไม่รักษาไว้ทางวิวัฒนาการจริงอย่างนั้น ไพรเมตที่คล้ายมนุษย์, หนูตะเภา, ปลา teleost, ค้างคาวโดยมาก และนกเกาะคอนบางพวก ล้วนสูญสมรรถภาพในการผลิตวิตามินซีเองไม่ว่าจะทางตับหรือไตโดยสูญต่างหาก ๆ กัน[146][147]ในกรณีทั้งหมดที่วิเคราะห์จีโนมในเรื่องการไร้สมรรถภาพการสังเคราะห์กรดแอสคอร์บิกที่จำเป็น (ascorbic acid auxotroph) จุดเริ่มความเปลี่ยนแปลงเป็นการกลายพันธุ์ที่ทำให้เสียการของยีนที่เข้ารหัส l-Gulono-γ-lactone oxidase ซึ่งเป็นเอนไซม์เร่งปฏิกิริยาการสังเคราะห์กรดแอสคอร์บิกขั้นสุดท้ายดังที่กล่าวไปแล้ว[148]คำอธิบายหนึ่งสำหรับการเสียสมรรถภาพเช่นนี้โดยเกิดซ้ำ ๆ ในประวัติวิวัฒนาการก็คือการเปลี่ยนความถี่ยีนอย่างไม่เจาะจง (genetic drift)และถ้าสมมุติว่า อาหารที่กินมีวิตามินซีสูง การคัดเลือกโดยธรรมชาติก็จะไม่ช่วยรักษาสมรรถภาพไว้[149][150]

ในกรณีไพรเมตกลุ่มซิเมียน[upper-alpha 14] เชื่อว่าการสูญสมรรถภาพการผลิตวิตามินซีเกิดขึ้นมานานแล้วก่อนที่มนุษย์หรือแม้แต่เอปจะเกิดขึ้น เพราะโดยหลักฐานแล้วมันเกิดตั้งแต่การปรากฏขึ้นของไพรเมตต้น ๆ แต่หลังจากการแยกออกเป็นอันดับย่อยสองอันดับหลัก ๆ คือ Haplorrhini[upper-alpha 13] (ไพรเมตจมูกแห้ง) ซึ่งไร้สมรรถภาพ และ Strepsirrhini (ไพรเมตจมูกเปียก) ซึ่งยังคงสมรรถภาพ[151]ตามการตรวจเวลาด้วยเทคนิค molecular clock ไพรเมตอันดับย่อยสองกลุ่มนี้แยกออกจากกันราว 63-60 ล้านปีก่อน[152]ประมาณ 3-5 ล้านปีต่อจากนั้น (คือ 58 ล้านปีก่อน) ซึ่งสั้นมากจากมุมมองทางวิวัฒนาการ infraorder "Tarsiiformes" ซึ่งปัจจุบันเหลืออยู่วงศ์เดียวคือทาร์เซียร์ (Tarsiidae) ก็ได้แยกออกจาก Haplorrhini อื่น ๆ[153][154]เพราะทาร์เซียร์ก็ผลิตวิตามินซีไม่ได้เหมือนกัน นี่แสดงนัยว่า การกลายพันธุ์ได้เกิดก่อนหน้านั้น และดังนั้น จึงต้องเกิดระหว่าง 63-58 ล้านปีก่อน[155]

มีข้อสังเกตด้วยว่า การเสียสมรรถภาพการสังเคราะห์แอสคอร์เบตเกิดขนานกับการเสียสมรรถภาพการสลายกรดยูริกซึ่งเป็นลักษณะอีกอย่างหนึ่งของไพรเมตบางชนิดทั้งกรดยูริกและแอสคอร์เบตเป็นตัวรีดิวซ์ที่มีกำลังซึ่งทำให้เสนอว่า ในไพรเมตที่ "สูงกว่า" กรดยูริกได้ทำหน้าที่บางอย่างแทนแอสคอร์เบต[156]

แหล่งที่มา

WikiPedia: วิตามินซี http://www.comlaw.gov.au/Details/F2011C00827 http://www.hc-sc.gc.ca/dhp-mps/prodnatur/applicati... http://www.inspection.gc.ca/food/labelling/food-la... http://www3.sympatico.ca/goweezer/canada/z00cartie... http://doc.rero.ch/record/303675/files/S0029665108... http://www.swissinfo.ch/eng/Specials/International... http://www.chemspider.com/Chemical-Structure.10189... http://idlewords.com/2010/03/scott_and_scurvy.htm http://www.naturalhub.com/natural_food_guide_fruit... http://www.nutritionj.com/content/pdf/1475-2891-2-...