ลักษณะคลื่นความถี่ ของ การจัดสรรคลื่นความถี่วิทยุสมัครเล่น

ความถี่ต่ำ

ดูเพิ่ม: ความถี่ต่ำ
ต่ำกว่าย่านความถี่ออกอากาศคลื่นยาวในเอเชียและยุโรป และต่ำกว่าย่านความถี่ออกอากาศเอเอ็มเชิงพาณิชย์มาก

ความถี่ปานกลาง

ต่ำกว่าย่านความถี่ออกอากาศเอเอ็มเชิงพาณิชย์และย่านความถี่วิทยุทางทะเลต่ำกว่าย่านความถี่ออกอากาศเอเอ็มเชิงพาณิชย์ การจัดสรรในกลุ่มนี้แตกต่างกันไปในแต่ละประเทศ ก่อนหน้านี้เคยใช้ร่วมกับระบบนำทางด้วยวิทยุ Loran-A ที่ส่วนใหญ่เลิกใช้งานไปแล้วย่านความถี่นี้ถือเป็นความท้าทายทางเทคนิค เนื่องจากการแพร่กระจายในระยะไกล (DX) มีแนวโน้มที่จะยากขึ้นเนื่องจากการดูดซับไอโอโนสเฟียร์ชั้น D ที่สูงขึ้น การแพร่กระจายในระยะไกลมีแนวโน้มที่จะเกิดขึ้นเฉพาะในเวลากลางคืน และย่านความถี่อาจมีเสียงรบกวนโดยเฉพาะในช่วงฤดูร้อน160 เมตรเรียกอีกอย่างว่า "ย่านความถี่บน" หลายปีที่ผ่านมามันเป็นย่านความถี่สมัครเล่นที่มีความยาวคลื่นยาวที่สุด แม้ว่ามันมักจะรวมอยู่ในคลื่นสั้น แต่ก็ตั้งอยู่ใกล้กับปลายด้านบนของย่านความถี่ปานกลาง

ความถี่สูง

ดูเพิ่ม: ความถี่สูง
ย่านความถี่ตามธรรมเนียมส่วนใหญ่ที่ระบุด้านล่างเป็นเพียงความยาวคลื่นที่กำหนด ไม่ใช่ความยาวคลื่นจริง ตัวอย่างเช่น
  • ในซีกโลกตะวันตก จริง ๆ แล้วย่านความถี่ 80 เมตร ระบุอยู่ระหว่างประมาณ 85.7–74.9 เมตร และค่าระหว่างประเทศอยู่ระหว่าง 85.7–83.3 เมตร
  • จริง ๆ แล้วย่านความถี่ "17 เมตร" ที่กำหนดครอบคลุมช่วง 16.6–16.5 เมตร
  • จริงๆ แล้วย่านความถี่ "15 เมตร" ที่ระบุนั้นอยู่ระหว่าง 14.28–13.98 เมตร ตามสามัญสำนึกแล้ว ย่านความถี่ "15 เมตร" ควรจะเรียกว่า "14 เมตร" แต่ชื่อนั้นถูกใช้กันมานานแล้วสำหรับย่านความถี่ออกอากาศคลื่นสั้น
  • 80 เมตร หรือ 80 / 75 เมตร – 3 500–4 000 kHz – 85.65–74.95 เมตร ในความเป็นจริง
ดีที่สุดในเวลากลางคืน โดยจะเกิดการดูดซับสัญญาณในเวลากลางวันอย่างมีนัยสำคัญ ทำงานได้ดีที่สุดในฤดูหนาว เนื่องจากเสียงรบกวนในบรรยากาศจากพายุฝนฟ้าคะนองครึ่งซีกโลกในช่วงฤดูร้อน มีเพียงประเทศในอเมริกาและประเทศอื่นเพียงไม่กี่ประเทศเท่านั้นที่สามารถเข้าถึงย่านความถี่นี้ได้ ในส่วนอื่น ๆ ของโลก นักวิทยุสมัครเล่นจะถูกจำกัดไว้ที่ 300 kHz (หรือน้อยกว่า) (85.65–83.28 เมตร)ในสหรัฐและแคนาดา ส่วนของย่านความถี่ตั้งแต่ 3.600–4.000 MHz กฎระเบียบอนุญาตให้ใช้เสียงแบบแถบข้างเดียวและเสียง AM ย่านความถี่ย่อยนี้มักเรียกกันว่า "ย่านความถี่ 75 เมตร" ส่วนหนึ่งเพื่อแยกความแตกต่างจากความถี่ที่ใช้ได้ในระดับสากลด้านล่าง
  • 60 เมตร – 5 MHz ภูมิภาค – ประมาณ 56 เมตร
การจัดสรรใหม่และเดิมมีให้บริการเฉพาะในประเทศจำนวนหนึ่ง เช่น สหรัฐ สหราชอาณาจักร ไอร์แลนด์ นอร์เวย์ เดนมาร์ก และไอซ์แลนด์ แต่ขณะนี้ยังคงขยายออกไปอย่างต่อเนื่อง ในประเทศส่วนใหญ่ (แต่ไม่ใช่ทั้งหมด) การจัดสรรจะแบ่งออกเป็นช่องและอาจต้องมีคำขอสิทธิ์ใช้งานพิเศษห้าช่องสัญญาณกว้าง 2.8 kHz มีให้บริการในสหรัฐ โดยมีศูนย์กลางอยู่ที่ 5.332, 5.348, 5.368, 5.373 และ 5.405 MHz เนื่องจากวิทยุส่วนใหญ่ในโหมด SSB แสดงความถี่พาหะ (suppressed) ในโหมด USB (upper sideband) ความถี่การเรียกขานกันทั้งหมดจึงต้องตั้งค่าให้ต่ำลง 1.5 kHz โดยทั่วไปการใช้งานด้วยเสียงจะอยู่ในโหมดแถบด้านข้างด้านบน (upper sideband) ซึ่งเป็นข้อบังคับในสหรัฐ ซึ่งในสหรัฐและแคนาดาอนุญาตให้ใช้ 100 วัตต์ในช่องสัญญาณที่มีอยู่ในปัจจุบันการประชุม ITU World Radiocommunication Conference (WRC-15) ประจำปี พ.ศ. 2558 อนุมัติการจัดสรรความถี่ทั่วโลกใหม่ที่ 5.351.5–5.366.5 MHz ให้กับนักวิทยุสมัครเล่นในระดับรอง การจัดสรรจะจำกัดกำลังส่งสถานีสมัครเล่นไว้ที่ 15 วัตต์ของกำลังไฟฟ้าใช้งานที่แผ่กระจาย (EIRP); อย่างไรก็ตาม สถานที่บางแห่งจะอนุญาตได้ถึง 25 วัตต์ EIRP
  • 40 เมตร – 7.000–7.300 MHz – 42.83–41.51 เมตร ในความเป็นจริง
ถือเป็นย่านความถี่ระยะทางไกล (DX) สำหรับทุกฤดูกาลที่น่าเชื่อถือที่สุด เป็นที่นิยมสำหรับการ DX ในเวลากลางคืน ย่านความถี่ 40 เมตรยังเชื่อถือได้สำหรับการส่งในระยะทางปานกลาง (1,500 กิโลเมตร / 1,000 ไมล์) ในระหว่างวัน ย่านความถี่นี้ส่วนใหญ่แชร์กับผู้ออกอากาศ และในประเทศส่วนใหญ่ คลื่นความถี่ต่ำสุด 100 kHz หรือ 200 kHz นั้นมีไว้สำหรับนักวิทยุสมัครเล่น อย่างไรก็ตาม เนื่องจากมีค่าใช้จ่ายสูงในการดำเนินการสิ่งอำนวยความสะดวกกระจายเสียงเชิงพาณิชย์กำลังสูง ทำให้จำนวนผู้ฟังที่ลดลง และการแข่งขันที่เพิ่มขึ้นจากบริการกระจายเสียงระหว่างประเทศบนอินเทอร์เน็ต บริการกระจายเสียงคลื่นสั้นจำนวนมากจึงถูกปิดตัวลง ปล่อยให้ผู้ใช้รายอื่นสำหรับนักวิทยุสมัครเล่นใช้ย่านความถี่ 40 เมตร ในการออกาอากาศวิทยุสื่อสาร
  • 30 เมตร – 10.100–10.150 MHz – 29.68–29.54 เมตร ในความเป็นจริง
ย่านความถี่ที่แคบมากซึ่งแชร์กับบริการที่ไม่ใช่กิจการวิทยุสมัครเล่น จึงแนะนำให้ใช้เฉพาะรหัสมอร์สและการส่งข้อมูลที่ย่านนี้ ซึ่งจริง ๆ แล้วในบางประเทศยังห้ามส่งสัญญาณเสียงในการสื่อสารวิทยุสมัครเล่นด้วยตัวอย่างเช่น ในสหรัฐ ข้อมูล, RTTY และ CW เป็นโหมดเดียวที่อนุญาตที่กำลังเอนเวโลปค่ายอด (PEP) สูงสุด 200 วัตต์ ในขณะที่บางประเทศไม่เปิดให้ใช้งานในกิจการวิทยุสมัครเล่นเลยเนื่องจากเป็นตำแหน่งที่ศูนย์กลางของสเปกตรัมคลื่นสั้น แถบนี้จึงมอบโอกาสที่สำคัญสำหรับการสื่อสารทางไกลในทุกจุดของวัฏจักรสุริยะ ย่านความถี่ 30 เมตรคือย่านความถี่ตามที่ประชุมใหญ่ระดับโลกทางวิทยุ (WARC band) ย่านความถี่ "WARC" ถูกเรียกเช่นนี้เนื่องมาจากการประชุมพิเศษ World Administrative Radio Conference ในปี พ.ศ. 2522 ได้มีการจัดสรรย่านความถี่ใหม่เหล่านี้เพื่อใช้ในวิทยุสมัครเล่น โดยที่การแข่งขันวิทยุสมัครเล่นจะไม่ใช้งานย่านความถี่ WARC
  • 20 เมตร – 14.000–14.350 MHz – 21.41–20.89 เมตร ในความเป็นจริง
ถือเป็นย่านความถี่ DX ที่ได้รับความนิยมมากที่สุด มักจะนิยมมากที่สุดในช่วงกลางวัน นักวิทยุที่นิยม QRP จะรู้กันว่าความถี่ 14.060 MHz เป็นความถี่เรียกขานหลักภายในย่านความถี่ ผู้ใช้โหมดข้อมูล PSK31 มักจะรวมตัวกันที่ความถี่ประมาณ 14.070 MHz กิจกรรม SSTV แบบอะนาล็อกมีศูนย์กลางอยู่ที่ความถี่ 14.230 MHz
  • 17 เมตร – 18.068–18.168 MHz – 16.6–16.5 เมตร ในความเป็นจริง
คล้ายกับระยะ 20 เมตร แต่มีความไวต่อค่าต่ำสุดและค่าสูงสุดของการแพร่กระจายของแสงอาทิตย์มากกว่า ย่านความถี่ 17 เมตรคือย่านความถี่ตามที่ประชุมใหญ่ระดับโลกทางวิทยุ (WARC band)
  • 15 เมตร – 21.000–21.450 MHz – 14.28–13.98 เมตร ในความเป็นจริง
มีประโยชน์มากที่สุดในช่วงโซลาร์แม็กซิมัม และโดยทั่วไปจะเป็นย่านความถี่เวลากลางวัน การแพร่กระจาย E ประปรายในเวลากลางวัน (1,500 กม. / 1,000 ไมล์) เกิดขึ้นเป็นครั้งคราวบนย่านความถี่นี้
  • 12 เมตร – 24.890–24.990 MHz – 12.04–12.00 เมตร ในความเป็นจริง
มีประโยชน์เป็นส่วนใหญ่ในช่วงกลางวัน แต่จะถูกใช้งานสำหรับกิจกรรม DX ในเวลากลางคืนในช่วงที่มีโซลาร์แม็กซิมัม ย่านความถี่ 12 เมตรคือหนึ่งย่านความถี่ตามที่ประชุมใหญ่ระดับโลกทางวิทยุ (WARC band) ซึ่งมีการแพร่กระจายโดยการขยาย E และแบบ F2 ประปราย
  • 10 เมตร – 28.000–29.700 MHz – 10.71–10.08 เมตร ในความเป็นจริง
กิจกรรมทางไกลที่ดีที่สุด (เช่น ข้ามมหาสมุทร) คือในช่วงที่มีโซลาร์แม็กซิมัม ในช่วงที่มีกิจกรรมสุริยะปานกลาง กิจกรรมที่ดีที่สุดจะพบได้ที่ละติจูดต่ำ ย่านความถี่นี้มีการแพร่กระจายคลื่นพื้นดินระยะสั้นถึงปานกลางที่เป็นประโยชน์ทั้งกลางวันและกลางคืนเนื่องจากการแพร่กระจายของ E ประปรายในช่วงปลายฤดูใบไม้ผลิและฤดูร้อนส่วนใหญ่ โดยไม่ต้องคำนึงถึงจำนวนจุดบอดบนดวงอาทิตย์ จึงมีการเปิดย่านความถี่สั้นในช่วงบ่ายไปยังพื้นที่ทางภูมิศาสตร์ขนาดเล็กที่ยาวถึง 1,500 กม. (1,000 ไมล์) Sporadic E เกิดจากพื้นที่ของการแตกตัวเป็นไอออนเข้มข้นในชั้น E ของบรรยากาศรอบนอก สาเหตุของ E กระจัดกระจายไม่เป็นที่เข้าใจอย่างสมบูรณ์ แต่ "เมฆ" ของการไอออไนซ์เหล่านี้สามารถแพร่กระจายในระยะสั้นจากความสูง 17 เมตรไปจนถึงช่องเปิด 2 เมตรเป็น โดยปกติแล้วการทำงานของ FM จะอยู่ที่ระดับบนสุดของย่านความถี่ (และตัวทวนสัญญาณก็อยู่ในเซ็กเมนต์ 29.500–29.700 MHz ในหลายประเทศ)

ความถี่สูงมาก และความถี่สูงยิ่ง

ความถี่ที่สูงกว่า 30 MHz เรียกว่าความถี่สูงมาก (VHF) และความถี่ที่สูงกว่า 300 MHz เรียกว่าความถี่สูงยิ่ง (UHF) ย่านความถี่ที่จัดสรรสำหรับนักวิทยุสมัครเล่นนั้นมีความกว้างหลายเมกะเฮิรตซ์ ทำให้สามารถใช้โหมดการส่งสัญญาณเสียงความเที่ยงตรงสูง (FM) และโหมดการรับส่งข้อมูลที่รวดเร็วมาก ซึ่งเป็นไปไม่ได้สำหรับการจัดสรรย่านความถี่กว้างกิโลเฮิรตซ์ในย่านความถี่ HF

ความถี่สูงมาก (VHF)
8 เมตร40–45 MHzในส่วนของ ITU ภูมิภาค 1
6 เมตร50–54 MHz
 50–52 MHzในส่วนของ ITU ภูมิภาค 1
4 เมตร70–70.5 MHzในส่วนของ ITU ภูมิภาค 1
2 เมตร144–148 MHz
 144–146 MHzITU ภูมิภาค 1
1.25 เมตร  219–220 MHz  ข้อความดิจิทัลแบบคงที่

ระบบการส่งต่อ

 222–225 MHzสหรัฐ และแคนาดา
ความถี่สูงยิ่ง (UHF)
70 เซนติเมตร420–450 MHz
 430–440 MHzITU ภูมิภาค 1
33 เซนติเมตร902–928 MHzITU ภูมิภาค 2
23 เซนติเมตร1 240–1 300 MHz
 1 240–1 325 MHzในสหราชอาณาจักร
13 เซนติเมตร2 300–2 310 MHzส่วนล่าง
 2 390–2 450 MHzส่วนบน

แม้ว่าการแพร่กระจายตาม "เส้นสายตา" จะเป็นปัจจัยหลักในการคำนวณช่วง แต่ความสนใจในย่านความถี่ที่สูงกว่า HF ส่วนใหญ่มาจากการใช้โหมดการแพร่กระจายอื่น ๆ โดยทั่วไปสัญญาณที่ส่งผ่าน VHF จากวิทยุแบบมือถือพกพาจะเดินทางประมาณ 5–10 กิโลเมตร (3–6 ไมล์) ขึ้นอยู่กับภูมิประเทศ เมื่อใช้สถานีประจำที่ที่ใช้พลังงานต่ำและสายอากาศแบบธรรมดา ระยะจะอยู่ที่ประมาณ 50 กิโลเมตร (30 ไมล์)

ด้วยระบบสายอากาศขนาดใหญ่ เช่น ยากิยาว และกำลังที่สูงกว่า (โดยทั่วไปคือ 100 วัตต์ขึ้นไป) การติดต่อในระยะทางประมาณ 1,000 กิโลเมตร (600 ไมล์) โดยใช้รหัสมอร์ส (CW) และโหมดแถบข้างเดียว (SSB) เป็นเรื่องปกติ นักวิทยุสมัครเล่นพยายามที่จะใช้ประโยชน์จากขีดจำกัดของคุณลักษณะปกติของความถี่ที่ต้องการเรียนรู้ ทำความเข้าใจ และทดลองกับความเป็นไปได้ของโหมดการแพร่กระจายที่ได้รับการปรับปรุง

ช่องเปิดของย่านความถี่แบบประปราย

ในบางครั้ง สภาวะไอโอโนสเฟียร์ที่แตกต่างกันหลายประการจะทำให้สัญญาณเดินทางเกินขีดจำกัดจากแนวสายตาปกติได้ นักวิทยุสมัครเล่นบางคนในย่าน VHF พยายามใช้ประโยชน์จาก "ช่องเปิดของย่านความถี่" ซึ่งการเกิดขึ้นตามธรรมชาติในชั้นบรรยากาศและบรรยากาศรอบนอก จะช่วยขยายระยะการส่งสัญญาณวิทยุให้ไกลกว่าช่วงปกติ นักวิทยุสมัครเล่นจำนวนมากเฝ้าฟังเป็นเวลาหลายชั่วโมงโดยหวังว่าจะใช้ประโยชน์จาก "ช่องเปิด" การขยายระยะส่งสัญญาณที่ขยายออกไปเป็นครั้งคราวเหล่านี้

สภาวะไอโอโนสเฟียร์เรียกว่า การประปรายชั้น E และ การเพิ่มประสิทธิภาพที่ผิดปกติ โหมดความผิดปกติที่ใช้ไม่บ่อยนัก ได้แก่ การกระจัดกระจายในชั้นโทรโพสเฟียร์ และแสงเหนือ (แสงเหนือ) การสะท้อนกลับของดวงจันทร์ และการถ่ายทอดสัญญาณผ่านดาวเทียมก็เป็นไปได้เช่นกัน

การประปรายชั้น E

ช่องเปิดบางแห่งเกิดจากการไอออไนเซชันที่รุนแรงของชั้นบรรยากาศชั้นบน ที่เรียกว่าไอโอโนสเฟียร์ ชั้น E เกาะที่มีไอออนไนซ์เข้มข้นเหล่านี้เรียกว่า "การประปรายชั้น E" และส่งผลให้เกิดลักษณะการแพร่กระจายที่ไม่แน่นอนแต่มักจะรุนแรงบนความถี่วิทยุ VHF "ความถี่ต่ำ"

ย่านความถี่สมัครเล่นความยาว 6 เมตรจัดอยู่ในหมวดหมู่นี้ ซึ่งมักเรียกว่า "วงเวทย์" (the magic band) โดยมักจะ "เปิด" จากพื้นที่เล็ก ๆ แห่งหนึ่งไปยังพื้นที่ทางภูมิศาสตร์เล็ก ๆ อีกแห่งที่อยู่ห่างออกไป 1,000–1,700 กิโลเมตร (600–1,000 ไมล์) ในช่วงฤดูใบไม้ผลิ และช่วงต้นฤดูร้อน ปรากฏการณ์นี้เกิดขึ้นในช่วงฤดูใบไม้ร่วง แม้ว่าจะไม่บ่อยนักก็ตาม

การหักเหของโทรโพสเฟียร์

ช่องเปิดบางครั้งเกิดจากปรากฏการณ์สภาพอากาศที่เรียกว่า "การผกผัน" ในชั้นบรรยากาศ ซึ่งบริเวณความกดอากาศสูงที่นิ่งทำให้เกิดอากาศอุ่นและเย็นที่แบ่งชั้นสลับกัน โดยทั่วไปจะกักอากาศเย็นไว้ข้างใต้ สิ่งนี้อาจทำให้เกิดวันที่มีหมอกควันหรือมีหมอกหนา แต่ยังส่งผลให้การส่งสัญญาณวิทยุ VHF และ UHF เดินทางหรือท่อไปตามขอบเขตของชั้นบรรยากาศที่อบอุ่น/เย็นเหล่านี้ เป็นที่ทราบกันว่าสัญญาณวิทยุสามารถเดินทางได้หลายร้อยหรือหลายพันกิโลเมตรเนื่องจากสภาพอากาศที่ไม่ซ้ำใครเหล่านี้

ตัวอย่างเช่น: ระยะทางที่ยาวที่สุดที่รายงานการติดต่อเนื่องจากการหักเหของแสงในชั้นบรรยากาศย่านความถี่ 2 เมตร คือ 4,754 กิโลเมตร (2,954 ไมล์) ระหว่างฮาวายกับเรือทางตอนใต้ของเม็กซิโก มีรายงานการรับสัญญาณเที่ยวเดียวจากเรอูนียงไปยังรัฐเวสเทิร์นออสเตรเลีย ในระยะทางมากกว่า 6,000 กิโลเมตร (4,000 ไมล์)[4]

การกระจัดกระจายโทรโปสเฟียร์ เกิดขึ้นเมื่อหยดน้ำและอนุภาคฝุ่นหักเหสัญญาณ VHF หรือ UHF เหนือขอบฟ้า การใช้กำลังส่งที่ค่อนข้างสูงและเสาอากาศกำลังขยายสูง การแพร่กระจายนี้จะทำให้การสื่อสาร VHF และ UHF เหนือขอบฟ้าได้รับการปรับปรุงเพิ่มขึ้นเล็กน้อยเป็นระยะทางหลายร้อยกิโลเมตร (ไมล์) ในช่วงคริสต์ทศวรรษ 1970 ผู้ออกอากาศแบบ "ไซต์กระจาย" เชิงพาณิชย์ที่ใช้เสาอากาศพาราโบลาขนาดใหญ่และมีกำลังสูงใช้โหมดนี้ในกิจการสื่อสารทางโทรศัพท์ในชุมชนห่างไกลทางตอนเหนือของอลาสกาและแคนาดา

การเข้าถึงดาวเทียม ใยแก้วนำแสงแบบฝัง และไมโครเวฟภาคพื้นดินทำให้ลดการใช้การกระจัดกระจายโทรโปสเฟียร์ในเชิงพาณิชย์และหลงเหลือเพียงในหนังสือประวัติศาสตร์ เนื่องจากมีต้นทุนและความซับซ้อนสูง โหมดนี้จึงมักอยู่ไกลเกินเอื้อมสำหรับนักวิทยุสมัครเล่นทั่วไป

การเพิ่มประสิทธิภาพทรานส์อิเควทอเรียลที่ผิดปกติ

การเปิดย่านความถี่ F2 และ TE จากโหมดการสะท้อน/การหักเหของแสงไอโอโนสเฟียร์อื่น ๆ หรือการแพร่กระจายของคลื่นท้องฟ้าตามที่ทราบกันดีว่าสามารถเกิดขึ้นเป็นครั้งคราวบนความถี่ VHF ย่านความถี่ต่ำที่ 6 หรือ 4 เมตร และน้อยมากที่ความถี่ 2 เมตร (ย่านความถี่สูง VHF) ในระหว่าง จุดสูงสุดในรอบดวงอาทิตย์ 11 ปี

การติดต่อภาคพื้นดินที่ไกลที่สุดเท่าที่เคยรายงานมาในย่านความถี่ 2 เมตร (146 MHz) อยู่ระหว่างสถานีในอิตาลีและสถานีในแอฟริกาใต้ ระยะทาง 7,784 กม (4,837 ไมล์) โดยใช้การปรับปรุงความผิดปกติเหนือเส้นศูนย์สูตร (TE) ของชั้นบรรยากาศรอบนอก เหนือเส้นศูนย์สูตรแม่เหล็กโลก การเพิ่มประสิทธิภาพนี้เรียกว่า TE หรือการแพร่กระจายข้ามเส้นศูนย์สูตร และ (โดยปกติ) เกิดขึ้นที่ละติจูด 2,500–3,000 กม (1,500–1,900 ไมล์) ภายในด้านใดด้านหนึ่งของเส้นศูนย์สูตร[5]

การสะท้อนกลับของแสงออโรร่า

พายุสุริยะที่รุนแรงทำให้เกิดแสงออโรร่า (แสงเหนือ) จะช่วยเพิ่มประสิทธิภาพการแพร่กระจายของคลื่นวิทยุความถี่ HF ต่ำ (6 เมตร) เป็นครั้งคราว ออโรร่าส่งผลต่อสัญญาณในย่านความถี่ 2 เมตรเป็นบางครั้งเท่านั้น สัญญาณมักจะผิดเพี้ยน และที่ความถี่ต่ำกว่าจะทำให้เกิด "วอเตอรี่ซาว" ที่น่าสงสัยกับสัญญาณ HF ที่แพร่กระจายตามปกติ สัญญาณสูงสุดมักจะมาจากทิศเหนือ แม้ว่าสัญญาณจะมาจากสถานีทางทิศตะวันออกหรือทิศตะวันตกของเครื่องรับก็ตาม ผลกระทบนี้มีส่งผลมากที่สุดในละติจูดทางตอนเหนือของ 45 องศา

สะท้อนผิวดวงจันทร์ (Earth-Moon-Earth)

นักวิทยุสมัครเล่นสามารถสื่อสารได้สำเร็จโดยการสะท้อนสัญญาณออกจากพื้นผิวดวงจันทร์ เรียกว่าการส่งสัญญาณระหว่างโลก-ดวงจันทร์-โลก (EME)

โหมดนี้ต้องใช้กำลังสูงปานกลาง (มากกว่า 500 วัตต์) และสายอากาศขนาดใหญ่พอสมควรและมีกำลังขยายสูง เนื่องจากการสูญเสียระหว่างเส้นทางไป-กลับอยู่ที่ 270 dB สำหรับสัญญาณ 70 เซนติเมตร สัญญาณย้อนกลับอ่อนและบิดเบี้ยวเนื่องจากความเร็วสัมพัทธ์ของสถานีส่งสัญญาณ ดวงจันทร์ และสถานีรับสัญญาณ พื้นผิวดวงจันทร์ยังมีหินมากและไม่สม่ำเสมออีกด้วย

เนื่องจากสัญญาณย้อนกลับที่อ่อนแอและบิดเบี้ยว การติดต่อสื่อสารสะท้อนพื้นผิวดวงจันทร์จึงใช้โหมดดิจิทัล ตัวอย่างเช่น รหัสมอร์สรุ่นเก่าหรือ JT65 สมัยใหม่ที่ออกแบบมาเพื่อทำงานกับสัญญาณอ่อน

รีเลย์ดาวเทียม

รีเลย์ดาวเทียมไม่ใช่โหมดการแพร่กระจายจริง ๆ แต่เป็นระบบทวนสัญญาณที่ทำงานอยู่ ดาวเทียมประสบความสำเร็จอย่างสูงในการให้ "การแพร่กระจายสัญญาณ" แก่ผู้ใช้ VHF/UHF/SHF นอกเหนือจากขอบฟ้า

กิจการวิทยุสมัครเล่นได้สนับสนุนการปล่อยดาวเทียมสื่อสารหลายสิบดวงนับตั้งแต่คริสต์ทศวรรษ 1970 ดาวเทียมเหล่านี้มักรู้จักกันในชื่อ OSCAR (Orbiting Satellite Carrying Amateur Radio) นอกจากนี้สถานีอวกาศนานาชาติ (ISS) ยังมีเครื่องกระจายสัญญาณวิทยุสมัครเล่นและบริการระบุตำแหน่งวิทยุบนเครื่องอีกด้วย

โทรทัศน์วิทยุสมัครเล่น

โทรทัศน์วิทยุสมัครเล่น (ATV) เป็นงานอดิเรกในการส่งสัญญาณวิดีโอและเสียงที่รองรับการออกอากาศโดยนักวิทยุสมัครเล่น นอกจากนี้ยังรวมถึงการศึกษาและการสร้างเครื่องส่งและเครื่องรับ ดังกล่าวและการแพร่กระจายระหว่างทั้งสองนี้

ในประเทศที่ใช้ระบบ NTSC ในการออกอากาศโทรทัศน์วิทยุสมัครเล่น ต้องใช้ช่องสัญญาณกว้าง 6 MHz ย่านความถี่ทั้งหมดที่ VHF หรือต่ำกว่ามีความกว้างน้อยกว่า 6 MHz ดังนั้นการทำงานของ ATV จึงถูกจำกัดไว้ที่ย่านความถี่ UHF ขึ้นไป ข้อกำหนดแบนด์วิธอาจจะแตกต่างจากนี้สำหรับการส่งสัญญาณในระบบ PAL และ SECAM

การออกอากาศโทรทัศน์วิทยุสมัครเล่นในย่านความถี่ 70 เซนติเมตรเป็นที่นิยมเป็นพิเศษ เนื่องจากสามารถรับสัญญาณได้จากโทรทัศน์ระบบเคเบิลทีวีทุกเครื่อง การทำงานในย่านความถี่ 33 เซนติเมตร และ 23 เซนติเมตร สามารถเสริมได้อย่างง่ายดายด้วยอุปกรณ์วิดีโอไร้สายระดับประชาชนหลากหลายประเภทที่มีอยู่และทำงานในความถี่ที่ไม่มีใบอนุญาตซึ่งตรงกับย่านความถี่เหล่านี้

การทำงานของรีพีทเตอร์โทรทัศน์วิทยุสมัครเล่น ต้องใช้รีพีทเตอร์ที่มีอุปกรณ์พิเศษ

ต่ำกว่าย่านความถี่แพร่สัญญาณคลื่นกลาง

ดูเพิ่ม: 500 kHz, 630 meter band, และ 2 200 meter band

ในอดีต สถานีวิทยุสมัครเล่นมักไม่ค่อยได้รับอนุญาตให้ออกอากาศบนความถี่ที่ต่ำกว่าย่านความถี่แพร่สัญญาณคลื่นกลาง แต่ในครั้งล่าสุด เนื่องจากผู้ที่ใช้งานความถี่ต่ำในอดีตได้ละทิ้งคลื่นความถี่ จึงมีการเปิดข้อจำกัดเพื่อรองรับกิจการสมัครเล่นเข้ามา การจัดสรรวิทยุและการทดลองออกอากาศพิเศษ

บางประเทศอนุญาตให้ดำเนินการวิทยุโทรเลขวิทยุสมัครเล่นในย่านความถี่ได้ อย่างไรก็ตาม หลายประเทศยังคงจำกัดความถี่เหล่านี้ ซึ่งในอดีตสงวนไว้สำหรับการโทรแจ้งเหตุฉุกเฉินทางทะเลและการบิน[6]

ย่านความถี่ 2,200 เมตรมีใช้งานในหลายประเทศ และการประชุมวิทยุคมนาคมโลก (WRC-07) ปี พ.ศ. 2550 ได้แนะนำให้ใช้ความถี่ดังกล่าวเป็นการจัดสรรสำหรับวิทยุสมัครเล่นทั่วโลก ก่อนที่จะมีการเปิดตัวย่านความถี่ 2,200 เมตรในสหราชอาณาจักรในปี พ.ศ. 2541 ออกอากาศบนความถี่ที่ต่ำกว่า 73 kHz ในย่านความถี่ต่ำสัญญาณเวลานั้นได้รับอนุญาตตั้งแต่ปี พ.ศ. 2539–2546

ใกล้เคียง

การจัดเรียงอิเล็กตรอนของธาตุ (หน้าข้อมูล) การจัดการความเครียด การจัดสรรคลื่นความถี่วิทยุสมัครเล่น การจัดหมู่หนังสือแบบทศนิยมดิวอี้ การจัดการทาลัสซีเมีย การจัดอันดับของจุฬาลงกรณ์มหาวิทยาลัย การจัดเส้นทางแบบหัวหอม การจัดอันดับของมหาวิทยาลัยเกษตรศาสตร์ การจัดอันดับของมหาวิทยาลัยมหิดล การจัดระดับความเหมาะสมของรายการโทรทัศน์ไทย

แหล่งที่มา

WikiPedia: การจัดสรรคลื่นความถี่วิทยุสมัครเล่น http://life.itu.int/radioclub/rr/hfband.htm http://www.arrl.org/frequency-bands http://www.arrl.org/band-plan https://web.archive.org/web/20110604234239/http://... https://web.archive.org/web/20081016011710/http://... https://web.archive.org/web/20160331181540/http://... https://web.archive.org/web/20171216012537/http://... http://df5ai.net/ArticlesDL/HadleyCellProp.pdf http://sektion-vhf.ssa.se/dxrecord/dxrec.htm http://www.radiomarine.org/gallery/show?keyword=US...