ในสัตว์ไม่มีกระดูกสันหลังและปลา ของ การรับรู้สนามแม่เหล็ก

นีมาโทดา Caenorhabditis elegans

นีมาโทดา Caenorhabditis elegans เสนอว่า ปรับทิศทางให้ตรงกับสนามแม่เหล็กโลกโดยใช้ชุดเซลล์ประสาทรับรู้สนามแม่เหล็กที่ได้อธิบายเป็นชุดแรกในปี 2015[23]คือ หนอนดูเหมือนจะใช้สนามแม่เหล็กเพื่อปรับทิศทางในช่วงการอพยพขึ้นลงในดิน โดยขั้วบวกลบจะเปลี่ยนไปขึ้นอยู่กับความหิว คือ หนอนที่หิวจะชอนลงในดิน ส่วนหนอนที่อิ่มจะชอนขึ้นแต่หลักฐานจากงานปี 2018 ดูเหมือนจะคัดค้านสิ่งที่พบเหล่านี้[24][25]

ทากทะเล Tochuina tetraquetra

ส่วนทากทะเลพันธุ์ Tochuina tetraquetra (เคยจัดเป็น Tritonia diomedea หรือ Tritonia gigantea) ได้ใช้ศึกษาว่าอะไรเป็นกลไกทางประสาทของการรับรู้สนามแม่เหล็กงานแรก ๆ สุด ใน Tochuina พบว่า ก่อนพระจันทร์จะเต็มดวง ทากจะปรับทิศทางร่างกายให้อยู่ระหว่างทิศเหนือ (ตามสนามแม่เหล็กโลก) กับทิศตะวันออก[26]คือได้สร้างทางแยกเป็นรูปตัว Y ทางขวาไปทางทิศใต้ (ตามสนามแม่เหล็กโลก) และทางซ้ายไปทางตะวันออกในสนามแม่เหล็กปกตินี้ ทาก 80% ไปทางซ้ายคือทางทิศตะวันออก

แต่เมื่อกลับขั้วสนามแม่เหล็กด้วยเครื่องคือย้ายทิศเหนือไป 180° ทากกลับไม่เลือกทางใดทางหนึ่งมากกว่า โดยทางแยกเท่ากับไปทางทิศเหนือและทิศตะวันตกแม้ผลการทดลองจะน่าสนใจ แต่ก็ไม่ทำให้สรุปได้ว่า ทากสามารถรับรู้สนามแม่เหล็กเพราะการทดลองไม่มีกลุ่มควบคุมสำหรับการใช้อุปกรณ์คือ Rubens’ coil เพื่อเปลี่ยนขั้วสนามแม่เหล็กดังนั้น จึงเป็นไปได้ว่าความร้อนหรือเสียงที่เครื่องสร้างทำให้ทากไม่เลือกทางใดทางหนึ่งเป็นพิเศษแต่งานศึกษาต่อ ๆ มาก็ไม่สามารถระบุเซลล์ประสาทที่ส่งกระแสประสาทอันเปลี่ยนไปเนื่องกับสนามแม่เหล็ก[27][28]

อย่างไรก็ดี เซลล์ประสาท pedal 5 ซึ่งเป็นนิวรอนสมมาตรสองระนาบ (bisymmetric neuron) ซึ่งอยู่ที่ pedal ganglion จะค่อย ๆ เปลี่ยนการส่งกระแสประสาทติดตามการกระตุ้นทางแม่เหล็กด้วย Rubens’ coil เป็นเวลา 30 นาทีงานศึกษาต่อมาพบว่า เซลล์ประสาท pedal 7 จะได้การยับยั้ง (inhibited) เมื่อกระตุ้นด้วยสนามแม่เหล็ก 30 นาทีแต่หน้าที่ของเซลล์ประสาททั้งสองในปัจจุบันก็ยังไม่ชัดเจน

แมลงวันทอง

แมลงวันทอง (Drosophila melanogaster) ต้องมีโปรตีนคริปโตโครม[upper-alpha 1]เพื่อตอบสนองต่อสนามแม่เหล็ก

แมลงวันทอง (Drosophila melanogaster) เป็นสัตว์ไม่มีกระดูกสันหลังอีกอย่างที่อาจปรับตัวให้เข้ากับสนามแม่เหล็กได้เทคนิกการทดลอง เช่น gene knockouts คือการทำให้ยีนหนึ่ง ๆ ไม่ทำงาน ช่วยให้สามารถตรวจสอบการรับรู้สนามแม่เหล็กอย่างละเอียดในแมลงวันมีแมลงวันทองหลายสายพันธุ์ที่ฝึกให้ตอบสนองต่อสนามแม่เหล็ก[14]ในการทดลองแบบให้เลือก (Preference tests) จะใส่แมลงวันในอุปกรณ์ที่มีแขนสองแขนที่ล้อมด้วยขดลวดไฟฟ้าโดยจะมีไฟฟ้าวิ่งผ่านทั้งสองขด แต่เพียงขดเดียวเท่านั้นที่จัดให้สร้างสนามแม่เหล็กโดยมีกำลัง 5 เกาส์เป็นอุปกรณ์ที่ใช้ทดสอบแมลงวันว่ารับรู้สนามแม่ตามธรรมชาติหรือไม่ คือตรวจดูตามการตอบสนองหลังจากฝึกให้รู้ว่ามีน้ำหวานอยู่ในแขนที่มีสนามแม่เหล็ก

แมลงวันหลายสายพันธุ์แสดงความชอบใจแขนที่มีสนามแม่เหล็กซึ่งได้เรียนรู้หลังจากฝึกแต่เมื่อโปรตีนคริปโตโครมเดียว[upper-alpha 1]ที่พบในแมลงวันคือยีน type 1 Cry เปลี่ยนไป ไม่ว่าจะเป็นการกลายพันธุ์แบบ missense mutation[upper-alpha 2]หรือแบบแทนที่ด้วยยีนอื่น แมลงวันก็ไม่แสดงว่าไวต่อสนามแม่เหล็กอีกต่อไปอนึ่ง เมื่อกรองแสงให้ความยาวคลื่นเกิน 420 นาโนเมตรเท่านั้นผ่านเข้ามาได้ แมลงวันก็จะไม่ตอบสนองอย่างเดียวกันตามที่ฝึกกับสนามแม่เหล็กซึ่งน่าจะเชื่อมกับการทำงานของคริปโตโครมของแมลงวันในสเปกตรัมแสงพิสัย 350-400 นาโนเมตรโดยถึงเขตที่ไม่ทำงานระหว่างพิสัย 430-450 นาโนเมตร[29]

แม้นักวิจัยจะเชื่อว่า กรดอะมิโนอัลฟาคือ tryptophan 3 ตัวจะเป็นก่ออนุมูลอิสระที่สนามแม่เหล็กอาจมีผล งานปี 2010 ในแมลงวันแสดงว่า tryptophan อาจไม่ใช่เหตุการรับรู้สนามแม่เหล็กที่อาศัยคริปโตโครมเพราะการเปลี่ยน tryptophan ไม่ได้ทำให้แมลงวันที่แสดงออกยีน type 1 Cry หรือ type 2 Cry (ซึ่งเป็นยีนคริปโตโครมที่พบในสัตว์มีกระดูกสันหลัง)[30]ดังนั้น จึงยังไม่ชัดเจนว่าคริปโตโครมสื่อการรับรู้สนามแม่เหล็กได้อย่างไรอนึ่ง การทดลองเหล่านี้ใช้สนามแม่เหล็กขนาด 5 เกาส์ ซึ่งมีกำลังเป็น 10 เท่าของสนามแม่เหล็กโลกและแมลงวันทองก็ไม่ปรากฏว่าสามารถตอบสนองต่อสนามแม่เหล็กโลกที่อ่อนกว่ามาก

ผึ้ง มด และปลวก

ผึ้งสกุล Apis (honey bee) มด และปลวกปรากฏอย่างชัดเจนแล้วว่าสามารรับรู้สนามแม่เหล็ก[31]ในมดและผึ้ง นี่ใช้ปรับทิศทางและหาทางในบริเวณรอบ ๆ รังและภายในเส้นทางที่อพยพ[32]เช่น ผึ้งบราซิลไม่ต่อยพันธุ์ Schwarziana quadripunctata สามารถแยกแยะความสูง ตำแหน่ง และทิศทาง โดยใช้อนุภาคที่คล้ายขนเป็นพัน ๆ บนหนวด[33]

ปลาแซลมอน

การศึกษาการรับรู้สนามแม่เหล็กในปลามีกระดูกสันหลังโดยหลักทำกับปลาแซลมอนยกตัวอย่างเช่น มีการพบเข็มทิศธรรมชาติในปลาแซลมอนซ็อกอาย (Oncorhynchus nerka)[34]นักวิจัยค้นพบโดยใส่ลูกปลาในถังกลมแล้วปล่อยให้มันออกตามทางออกได้อย่างเป็นอิสระแล้วคำนวณเวกเตอร์เฉลี่ยแสดงทิศทางที่ปลาชอบภายในสนามแม่เหล็กธรรมชาติแต่เมื่อกลับขั้วสนามแม่เหล็ก ปลาก็เปลี่ยนความชอบตามทิศทางสนามแม่เหล็กไปด้วย[34]ดังนั้น นักวิจัยจึงสรุปว่า พฤติกรรมว่ายน้ำไปในทิศต่าง ๆ ของปลาแซลมอนซ็อกอายได้รับอิทธิพลจากสนามแม่เหล็ก

งานวิจัยต่อมาตรวจดูการรับรู้สนามแม่เหล็กของปลาแซลมอนชินูก (Oncorhynchus tschawytscha)เพื่อจัดให้ปลาชอบทิศทางในแนวตะวันออก-ตะวันตก (ตามสนามแม่เหล็กโลก) จึงใส่ปลาลงถังน้ำรูปสี่เหลี่ยมผืนผ้าที่น้ำไหลจากทิศตะวันตกไปทางทิศตะวันออกเป็นเวลา 18 เดือน[35]และยังเลี้ยงอาหารปลาที่สุดถังทางทิศตะวันตกในช่วงนี้ด้วยเมื่อใส่ปลาแซลมอนกลุ่มเดียวกันในถังกลมที่น้ำไหลอย่างสมมาตรกัน ปลากก็ชอบวางตัวไปตามแนวทิศตะวันออก-ตะวันตกตามคาดแต่เมื่อหมุนขั้วสนามแม่เหล็ก 90 องศา ปลาก็เปลี่ยนแนวที่ชอบ 90 องศาเช่นกัน[35]นักวิจัยจึงสรุปว่า ปลาแซลมอนชินูกมีสมรรถภาพในการใช้ข้อมูลสนามแม่เหล็กเพื่อหาทิศทาง

ปลาตูหนา

งานศึกษาอย่างน้อยหนึ่งงานยังได้รายงานการรับรู้สนามแม่เหล็กของปลาตูหนายุโรป (วงศ์ปลาตูหนา Anguilla anguilla, European eel)[36]

ใกล้เคียง

การรับรู้รส การรับบุคคลเข้าศึกษาในสถาบันอุดมศึกษาในประเทศไทย การรับรู้อากัปกิริยา การรักษาสันติภาพของสหประชาชาติ การรับรู้ไฟฟ้า การรักษามะเร็งแบบทางเลือก การรับรู้สนามแม่เหล็ก การรับมือโดยใช้อารมณ์ (จิตวิทยา) การรัดเท้า การรับรู้ความใกล้ไกล

แหล่งที่มา

WikiPedia: การรับรู้สนามแม่เหล็ก http://www.funpecrp.com.br/gmr/year2009/vol8-2/pdf... http://www.frontiersinzoology.com/content/10/1/80/... http://www.ingentaconnect.com/content/stl/prk/2002... http://blogs.nature.com/news/2011/01/fox_rangefind... http://www.nature.com/articles/nature11046 http://www.nature.com/ncomms/journal/v2/n6/full/nc... http://www.nature.com/nrn/journal/v6/n9/abs/nrn174... http://magnum.mpi-bremen.de/magneto/research/index... http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-46... http://adsabs.harvard.edu/abs/1971PNAS...68..102K