เครื่องกำเนิดไฟฟ้าด้วยแม่เหล็กไฟฟ้า ของ เครื่องกำเนิดไฟฟ้า

ไดนาโม

บทความหลัก: ไดนาโม

"เครื่องไฟฟ้าไดนาโม" (มุมมองส่วนท้าย, บางส่วนเนื้อหา, สิทธิบัตรสหรัฐอเมริกา 284,110) ปี 1883

ไดนาโมเป็นเครื่องกำเนิดไฟฟ้าที่ผลิตไฟฟ้ากระแสตรงด้วยการใช้คอมมิวเตเตอร์ ไดนาโมเป็นตัวให้กำเนิดไฟฟ้าเครื่องแรกที่สามารถส่งมอบพลังงานสำหรับอุตสาหกรรม และเป็นรากฐานให้หลายๆอุปกรณ์ที่แปลงพลังงานไฟฟ้าต่อมา รวมทั้งมอเตอร์ไฟฟ้า, เครื่องกำเนิดไฟฟ้ากระแสสลับและต้วแปลงหมุน วันนี้เครื่องกำเนิดกระแสสลับที่เรียบง่ายครองตลาดการผลิตไฟฟ้าขนาดใหญ่ ให้ประสิทธิภาพที่ดี เชื่อถือได้และค่าใช้จ่ายสมเหตุสมผล ไดนาโมมีข้อเสียอยู่ที่กลไกของคอมมิวเตเตอร์ นอกจากนี้ การแปลงกระแสสลับให้เป็นกระแสตรงโดยการใช้ตัวเรียงกระแสกำลัง(หลอดสุญญากาศหรืออุปกรณ์โซลิดสเตทล่าสุด) มีประสิทธิภาพและมักจะประหยัดทางเศรษฐกิจ

เครื่องกำเนิดไฟฟ้ากระแสสลับ

บทความหลัก: Alternator

โดยไม่ต้องใช้คอมมิวเตเตอร์, ไดนาโมกลายเป็นเครื่องกำเนิดไฟฟ้ากระแสสลับ ซึ่งเป็นเครื่องกำเนิดไฟฟ้าแบบซิงโครนัสซิงเกิลฟีด alternators ผลิตกระแสสลับด้วยความถี่หนึ่งที่จะขึ้นอยู่กับความเร็วในการหมุนของโรเตอร์และจำนวนขั้วแม่เหล็ก

alternators ในรถยนต์ผลิตความถี่ที่แตกต่างกัน เปลี่ยนแปลงไปตามความเร็วรอบของเครื่องยนต์ แล้วจะถูกแปลงเป็น DC โดยตัวเรียงกระแส alternators ที่ป้อนให้กับเพาเวอร์กริดไฟฟ้าจะทำงานโดยทั่วไปที่ความเร็วที่ใกล้เคียงกับความถี่หนึ่งที่เฉพาะเจาะจงเพื่อประโยชน์ของ อุปกรณ์ AC ที่ควบคุมความเร็วและประสิทธิภาพการทำงานบนความถี่ของกริด อุปกรณ์บางอย่างเช่นหลอดไส้และหลอดเรืองแสงที่ทำงานด้วยบัลลาสต์ไม่จำเป็นต้องมีความถี่คงที่ แต่มอเตอร์แบบซิงโครนัส เช่นในนาฬิกาไฟฟ้าแขวนผนังจำเป็นต้องใช้ความถี่กริดคงที่

เมื่อต่อเข้ากับกริดไฟฟ้าขนาดใหญ่กว่าที่มี alternators อื่นๆ, alternator จะทำปฏิสัมพันธ์แบบไดนามิกกับความถี่ที่มีอยู่แล้วในกริด และจะต้องทำงานที่ความเร็วที่เข้ากันได้กับความถี่กริด ถ้าไม่มีพลังงานขับใส่เข้าไป alternator จะยังคงหมุนต่อไปที่ความเร็วคงที่อยู่ดี แต่จะถูกขับเหมือนกับว่าเป็นมอเตอร์ซิงโครนัสตัวหนึ่งตามความถี่กริด ปกติแล้ว มันจำเป็นสำหรับ alternator ที่จะ ถูกเร่งความเร็วให้ได้ถึงความเร็วและการจัดตำแหน่งเฟสที่ถูกต้องก่อนที่จะเชื่อมต่อเข้ากับกริด เพราะการที่มีความถี่ไม่ตรงกันจะทำให้ alternator ทำงานเป็นมอเตอร์ซิงโครนัส และจะ กระโดดทันทีทันใดไปที่การจัดตำแหน่งเฟสที่ถูกต้องเนื่องจากมันดูดซับกระแสไหลเข้าฉับพลันอย่างมากจากกริด ซึ่งอาจเกิดความเสียหายกับโรเตอร์และอุปกรณ์อื่น ๆ

alternators ทั่วไปใช้ขดลวดสนามโรเตอร์ที่ถูกกระตุ้นด้วยกระแสตรง และขดลวดอยู่กับที่ (สเตเตอร์)เพื่อผลิตกระแสสลับ เนื่องจากสนามแม่เหล็กที่โรเตอร์ต้องการเป็นเพียงส่วนเล็กๆของพลังงานที่ถูกสร้างขึ้นโดยเครื่อง, แปรงถ่านสำหรับต่อกับสนามจะสามารถมีขนาดค่อนข้างเล็กได้ ในกรณีที่ตัวกระตุ้นไม่ได้ใช้แปรงถ่า

น แกนโรเตอร์จะมีตัวเรียงกระแสเกาะอยู่เพื่อกระตุ้นขดลวดสนามหลัก

เครื่องกำเนิดไฟฟ้าแบบเหนี่ยวนำ

บทความหลัก: Induction generator

เครื่องกำเนิดไฟฟ้าแบบเหนี่ยวนำหรือเครื่องกำเนิดไฟฟ้าแบบอะซิงโครนัสคือเครื่องกำเนิดไฟฟ้า กระแสสลับประเภทหนึ่งที่ใช้หลักการของมอเตอร์เหนี่ยวนำในการผลิตพลังงาน เครื่องกำเนิดไฟฟ้าแบบเหนี่ยวนำทำงานโดยการหมุนโรเตอร์ด้วยแรงกลให้เร็วกว่าความเร็วซิงโครนัส ทำให้เกิด slip ในเชิงลบ มอเตอร์ AC อะซิงโครนัสโดยทั่วไปมักจะสามารถถูกใช้เป็นเครื่องกำเนิดไฟฟ้าตัวหนึ่งได้โดยไม่มีการแก้ไขใดๆภายใน เครื่องกำเนิดไฟฟ้าแบบเหนี่ยวนำมีประโยชน์ในการใช้งาน เช่นโรงงานไฟฟ้าพลังน้ำขนาดเล็ก, กังหันลมหรือในการลดกระแสก๊าซแรงดันสูงให้มีแรงดันต่ำลง เพราะมันสามารถกู้คืนพลังงานด้วยการควบคุมที่ค่อนข้างง่าย

ในการใชังานเครื่องกำเนิดไฟฟ้าแบบเหนี่ยวนำ มันจะต้องถูกกระตุ้นด้วย leading voltage สิ่งนี้ มักจะทำโดยการเชื่อมต่อกับกริดไฟฟ้า หรือบางครั้งพวกมันจะถูกกระตุ้นได้ด้วยตัวเองโดยใช้ตัวเก็บประจุแก้ไขเฟส

เครื่องกำเนิดไฟฟ้าแบบ MHD

บทความหลัก: MHD generator

เครื่องกำเนิดไฟฟ้าแบบ magnetohydrodynamic สกัดพลังงานไฟฟ้าโดยตรงจากก๊าซร้อนที่เคลื่อนที่ผ่านสนามแม่เหล็กโดยไม่ต้องใช้การหมุนของเครื่องจักรกลแม่เหล็กไฟฟ้า เครื่องกำเนิดไฟฟ้าแบบ MHD มีการพัฒนามาแต่เดิมเพราะเอาต์พุตของ เครื่องกำเนิดไฟฟ้า MHD พลาสม่าเป็นเปลวไฟ ดีพอที่จะให้ความร้อนแก่หม้อไอน้ำของโรงไฟฟ้าไอน้ำ การออกแบบในทางปฏิบัติ ครั้งแรกคือ Avco Mk 25 ได้รับการพัฒนาในปี ค.ศ. 1965 รัฐบาลสหรัฐ ได้ให้ทุนสนับสนุน การพัฒนาที่สำคัญ สูงสุดในโรงงานสาธิตขนาด 25 MW ในปี ค.ศ. 1987 ในสหภาพโซเวียต จากปี 1972 จนถึงปลายปี 1980s โรงงาน MHD U25 อยู่ในการดำเนินงานเชิงพาณิชย์ ปกติในระบบไฟฟ้ามอสโกด้วยกำลังการผลิต 25 เมกะวัตต์ โรงงาน MHD ที่มีกำลังการผลิตที่ใหญ่ที่สุดในโลกในเวลานั้น[8]. เครื่องกำเนิดไฟฟ้าแบบ MHD ที่ดำเนินการเป็น topping cycle ในปัจจุบัน(ปี 2007) มีประสิทธิภาพน้อยกว่ากังหันก๊าซความร้อนร่วม

เครื่องกำเนิดไฟฟ้าหมุนอื่นๆ

เครื่องกำเนิดไฟฟ้าชนิดอื่นๆเช่น เครื่องกำเนิดไฟฟ้าแบบอะซิงโครนัสหรือแบบเหนี่ยวนำซิงเกิลฟีด เครื่องกำเนิดไฟฟ้าแบบดับเบิลฟีด หรือเครื่องกำเนิดไฟฟ้าแบบพันโรเตอร์ไม่ใช้แปรงถ่านดับเบิลฟีดเหล่านี้ไม่รวมแม่เหล็กถาวรหรือขดลวดสนามแม่เหล็กที่ใช้สร้างสนามแม่เหล็กคง และ เป็นผลให้เห็นความสำเร็จในการปรับความเร็วในการใช้งานความถี่คงที่ เช่นกังหันลมหรือเทคโนโลยีพลังงานทดแทนอื่นๆ

ประสิทธิภาพการทำงานที่ส่งออกเต็มรูปแบบของเครื่องกำเนิดไฟฟ้าใดๆ สามารถถูกปรับให้เหมาะสมกับการควบคุมทางอิเล็กทรอนิกส์ แต่เครื่องกำเนิดแบบดับเบิลฟีดหรือเครื่องกำเนิดไฟฟ้าแบบพันโรเตอร์ไม่ใช้แปรงถ่านเท่านั้นจะรวมการควบคุมอิเล็กทรอนิกส์กับเพาเวอร์เรทติ้งที่มีน้อยกว่าเพาเวอร์เอาต์พุตของตัวกำเนิดที่อยู่ภายใต้การควบคุม คุณสมบัติซึ่งโดยตัวของมันเอง จะเสนอค่าใช้จ่าย, ความน่าเชื่อถือและผลประโยชน์ที่มีประสิทธิภาพ

เครื่องกำเนิดไฟฟ้าแบบ Homopolar

บทความหลัก: Homopolar Generator

จานฟาราเดย์ เครื่องกำเนิดแบบ homopolar เครื่องแรก

เครื่องกำเนิดไฟฟ้าแบบ homopolar เป็นเครื่องกำเนิดไฟฟ้ากระแสตรงที่ประกอบไปด้วยแผ่น ตัวนำไฟฟ้าหรือกระบอกหมุนในระนาบที่ตั้งฉากกับสนามแม่เหล็กสม่ำเสมอติดอยู่กับที่ ความต่างศักย์จะถูกสร้างขึ้นระหว่างศูนย์กลางของแผ่นดิสก์และขอบ(หรือปลายของกระบอก) ขั้วไฟฟ้าจะขึ้นอยู่กับทิศทางการหมุนและการวางตัวของสนามแม่เหล็ก มันยังเป็นที่รู้จักกันว่าเป็นเครื่องกำเนิดไฟฟ้าแบบ unipolar, เครื่องกำเนิดไฟฟ้าแบบ acyclic, ดิสก์ไดนาโม หรือฟาราเดย์ดิสก์ แรงดันไฟฟ้าโดยทั่วไปจะต่ำ เพียงไม่กี่โวลต์ในกรณีของรุ่นสาธิตขนาดเล็ก แต่เครื่องกำเนิดเพื่อ การวิจัยขนาดใหญ่สามารถผลิตหลายร้อยโวลต์ และบางระบบมีหลายเครื่องกำเนิดต่อกันเป็นแถว เพื่อผลิตแรงดันไฟฟ้าขนาดใหญ่[9] พวกมันมีความผิดปกติ ในการที่พวกมันสามารถผลิตกระแสไฟฟ้าสูงอย่างมาก บางเครื่องมากกว่าหนึ่งล้านแอมแปร์ เพราะเครื่องกำเนิดไฟฟ้าแบบ homopolar สามารถถูกทำให้มีความต้านทานภายในที่ต่ำมาก

การกระตุ้น

alternator ขนาดเล็กในช่วงต้นของปี 1900s ขนาด 75 kVA ขับเคลื่อนโดยตรง ติดตั้งที่สถานีผลิตไฟฟ้ากระแสสลับ กับเครื่องกระตุ้นขับเคลื่อนด้วยสายพานแยกส่วน

บทความหลัก: Excitation (magnetic)

เครื่องกำเนิดไฟฟ้าหรือมอเตอร์ไฟฟ้าที่ใช้ขดลวดสนามแม่เหล็กแทนที่จะใช้แม่เหล็กถาวรต้องการกระแสไหลในขดลวดสนามเพื่อให้อุปกรณ์สามารถทำงานได้ ถ้าขดลวดสนามไม่ได้ถูกใส่พลังขับเคลื่อน โรเตอร์ในเครื่องกำเนิดไฟฟ้าสามารถหมุนได้โดยไม่ได้ผลิตพลังงานไฟฟ้าที่ สามารถใช้งานได้ ในขณะที่ใบพัดของมอเตอร์อาจจะไม่หมุนเลย

เครื่องกำเนิดไฟฟ้าขนาดเล็กที่บางครั้งกระตุ้นตัวเองได้ ซึ่งหมายความว่าขดลวดสนามถูกใส่กำลังจากกระแสที่ผลิตโดยตัวเครื่องกำเนิดไฟฟ้าเอง ขดลวดสนามจะถูกเชื่อมต่อแบบอนุกรมหรือแบบ ขนานกับขดลวดของอาเมเจอร์ เมื่อเครื่องกำเนิดไฟฟ้าเริ่มจะทำงานในตอนแรก อำนาจแม่เหล็กขนาดเล็กที่ยังค้างอยู่ในแกนเหล็กจะให้สนามแม่เหล็กเพื่อสตาร์ทเครื่อง ทำให้เกิดกระแสขนาดเล็กในอาเมเจอร์ กระแสนี้จะไหลผ่านขดลวดสนาม, ไปสร้างสนามแม่เหล็กที่มีขนาดใหญ่ ซึ่งจะสร้างกระแสขนาดใหญ่กว่าในอาเมเจอร์ กระบวนการ"bootstrap"นี้ดำเนินต่อไปจนกว่าสนามแม่เหล็กในแกนกลางมีระดับมากพอจนอิ่มตัว และเครื่องกำเนิดไฟฟ้าเข้าสู่สภาวะมั่นคงในการจ่ายพลังงานออกไป

เครื่องกำเนิดไฟฟ้าในสถานีไฟฟ้าที่มีขนาดใหญ่มากมักจะใช้เครื่องกำเนิดไฟฟ้าขนาดเล็กที่แยกต่างหากเพื่อกระตุ้นขดลวดสนามของตัวที่ใหญ่กว่า ในกรณีที่ไฟฟ้าดับอย่างรวดเร็วรุนแรงเป็นบริเวณกว้างและสถานีพลังงานอยู่ในบริเวณที่ไฟดับ สถานีทั้งหลายอาจต้องสตาร์ทแบบ black start เพื่อกระตุ้นสนามแม่เหล็กของเครื่องกำเนิดไฟฟ้าตัวที่ใหญ่ที่สุด เพื่อเรียกคืนพลังงานให้ลูกค้า[10]

ใกล้เคียง

เครื่องราชอิสริยาภรณ์อันเป็นที่เชิดชูยิ่งช้างเผือก เครื่องราชอิสริยาภรณ์อันมีเกียรติยศยิ่งมงกุฎไทย เครื่องราชอิสริยาภรณ์ไทย เครื่องราชอิสริยาภรณ์อันมีศักดิ์รามาธิบดี เครื่องราชอิสริยาภรณ์จุลจอมเกล้า เครื่องบินขับไล่ เครื่องราชอิสริยาภรณ์อันเป็นที่สรรเสริญยิ่งดิเรกคุณาภรณ์ เครื่องปฏิกรณ์นิวเคลียร์ เครื่องคิดเลข เครื่องขัตติยราชอิสริยาภรณ์อันมีเกียรติคุณรุ่งเรืองยิ่งมหาจักรีบรมราชวงศ์