การใช้ทางพลเรือน ของ เทคโนโลยีนิวเคลียร์

พลังงานนิวเคลียร์

ข้อมูลเพิ่มเติม: พลังงานนิวเคลียร์และเทคโนโลยีเครื่องปฏิกรณ์นิวเคลียร์

พลังงานนิวเคลียร์เป็นประเภทหนึ่งของเทคโนโลยีนิวเคลียร์ที่เกี่ยวข้องกับการใช้แบบควบคุมของนิวเคลียร์ที่จะปล่อยพลังงานสำหรับการทำงานที่รวมถึงแรงขับดัน, ความร้อน, และการผลิตกระแสไฟฟ้า. พลังงานนิวเคลียร์ถูกผลิตโดยปฏิกิริยาลูกโซ่นิวเคลียร์ที่ถูกควบคุมซึ่งจะสร้างความร้อนที่ใช้ในการต้มน้ำ, ผลิตไอน้ำ, และขับกังหันไอน้ำ. กังหันถูกใช้ในการผลิตกระแสไฟฟ้าและ/หรือในการทำงานทางกล.

ปัจจุบันพลังงานนิวเคลียร์มีประมาณ 15.7% ของการผลิตไฟฟ้าของโลก (ในปี 2004) และถูกใช้ในการขับเคลื่อนเรือบรรทุกเครื่องบิน, เรือตัดน้ำแข็งและเรือดำน้ำ (นับถึงปัจจุบันเศรษฐศาสตร์และความกลัวในบางท่าเรือมีการหลีกเลี่ยงการใช้พลังงานนิวเคลียร์ในเรือขนส่ง)[5]. ทุกโรงไฟฟ้านิวเคลียร์ใช้ปฏิกิริยาฟิชชัน. ยังไม่มีปฏิกิริยาฟิวชั่นที่มนุษย์สร้างขึ้นในการผลิตกระแสไฟฟ้า.

การใช้งานทางการแพทย์

ข้อมูลเพิ่มเติม: เวชศาสตร์นิวเคลียร์ (อังกฤษ: Nuclear medicine)

การประยุกต์ใช้งานทางการแพทย์ของเทคโนโลยีนิวเคลียร์จะถูกแบ่งออกเป็นการวินิจฉัยและการรักษาด้วยรังสี.

การถ่ายภาพ - การใช้งานที่ใหญ่ที่สุดของรังสีในทางการแพทย์จะอยู่ใน'การถ่ายภาพรังสีทางการแพทย์' (อังกฤษ: medical radiography) เพื่อสร้างภาพภายในของร่างกายมนุษย์โดยใช้รังสีเอกซ์. วิธีการนี้เป็นแหล่งที่มาของสิ่งแปลกปลอมที่ใหญ่ที่สุดของการได้รับรังสีสำหรับมนุษย์. ตัวสร้างภาพ x-ray ทางการแพทย์และทันตกรรมจะใช้โคบอลต์-60 หรือแหล่งสร้าง X-ray อื่นๆ. ยารังสี (อังกฤษ: radiopharmaceutical) จำนวนมากมีการนำมาใช้, บางครั้งติดอยู่กับโมเลกุลของสารอินทรีย์, เพื่อทำหน้าที่แกะรอยกัมมันตรังสีเป็นหรือสารทึบรังสี (สารดังกล่าวเรียกว่าสารสร้างความแตกต่างของภาพ (อังกฤษ: contrast agent)) ในร่างกายมนุษย์, เช่นในระหว่างการทำ CT scan. นิวคลีโอไทด์[6] ที่ปล่อยโพซิตรอน[7] ถูกใช้สำหรับการถ่ายภาพช่วงกว้างความละเอียดสูงในเวลาสั้นๆในการประยุกต์ใช้งานที่รู้จักกันว่าเป็นการสร้างภาพเอกซเรย์ด้วยการปล่อยโพซิตรอน (อังกฤษ: Positron emission tomography).

การฉายรังสียังถูกนำมาใช้ในการรักษาโรคด้วยวิธี'การรักษาด้วยรังสี' (อังกฤษ: radiation therapy) อีกด้วย.

การประยุกต์ใช้ในงานอุตสาหกรรม

เนื่องจากบางรังสีสามารถเจาะเข้าไปในมวลสารได้, พวกมันจะถูกใช้สำหรับการวัดได้อย่างหลากหลาย. รังสีเอกซ์และรังสีแกมมาจะถูกใช้ในการถ่ายภาพรังสีอุตสาหกรรมเพื่อสร้างภาพภายในของผลิตภัณฑ์ที่เป็นของแข็ง, เป็นวิธีการทดสอบและการตรวจสอบโดยไม่ทำลายผลิตภัณฑ์นั้น. ชิ้นส่วนที่จะทำการถ่ายภาพรังสีจะถูกวางอยู่ระหว่างแหล่งสร้างรังสีและฟิล์มถ่ายภาพในเทปคาสเซ็ท. หลังจากการสัมผัสกับรังสีในช่วงเวลาหนึ่ง, ฟิล์มจะถูกล้างและมันจะแสดงให้เห็นข้อบกพร่องใดๆภายในของวัสดุ.

มาตรวัด - มาตรวัดใช้กฎของการดูดซึมแบบ exponential ของรังสีแกมมา.

  • ตัวชี้วัดระดับ: แหล่งสร้างรังสีและตัวตรวจจับจะอยู่คนละฝั่งของภาชนะบรรจุ, เพื่อแสดงการปรากฏหรือไม่ปรากฏของวัสดุในเส้นทางรังสีแนวนอน. รังสีที่ใช้จะเป็นรังสี Beta หรือแกมมาขึ้นอยู่กับความหนาและความหนาแน่นของวัสดุที่จะวัด. วิธีการนี้จะใช้สำหรับภาชนะบรรจุของเหลวหรือสารเม็ดเล็กๆ.
  • เครื่องวัดความหนา: ถ้าวัสดุมีความหนาแน่นคงที่, สัญญาณที่วัดได้โดยตัวตรวจจับรังสีจะขึ้นอยู่กับความหนาของวัสดุ. นี้จะเป็นประโยชน์สำหรับการผลิตที่ทำอย่างต่อเนื่อง, เช่นกระดาษ, ยาง ฯลฯ

การควบคุมไฟฟ้าสถิต - เพื่อหลีกเลี่ยงการสร้างขึ้นของกระแสไฟฟ้าสถิตย์ในการผลิตกระดาษ, พลาสติก, สิ่งทอสังเคราะห์ ฯลฯ, แหล่งผลิตรังสีอัลฟารูปริบบิ้น 241Americium สามารถวางใกล้กับวัสดุที่ปลายของสายการผลิต. แหล่งดังกล่าวจะ ionizes อากาศเพื่อเคลื่อนย้ายประจุไฟฟ้าบนวัสดุออกไป.

เครื่องแกะรอยกัมมันตรังสี - เนื่องจากไอโซโทปกัมมันตรังสีจะประพฤติ, ทางเคมี, ส่วนใหญ่เหมือนองค์ประกอบที่ไม่แอ็คทีฟ, พฤฒิกรรมของสารเคมีบางอย่างสามารถถูกสืบหาได้ด้วย"การแกะรอย" กัมมันตภาพรังสี. ตัวอย่าง:

  • การเพิ่มตัวแกะรอยแกมมาให้กับก๊าซหรือของเหลวในระบบปิดทำให้มันเป็นไปได้ที่จะหารูในหลอด
  • การเพิ่มตัวแกะรอยให้กับพื้นผิวของส่วนประกอบของมอเตอร์ทำให้มันเป็นไปได้ที่จะวัดการสึกหรอโดยการวัดการทำงานของน้ำมันหล่อลื่น.

การสำรวจหาน้ำมันและก๊าซ - การทำรายงานหลุมเจาะ (อังกฤษ: well logging) ด้วยนิวเคลียร์จะถูกใช้เพื่อช่วยทำนายศักยภาพในเชิงพาณิชย์ของหลุมเจาะใหม่หรือหลุมที่มีอยู่แล้ว. เทคโนโลยีที่ใช้จะเกี่ยวข้องกับการใช้นิวตรอนหรือแหล่งกำเนิดรังสีแกมมาและตัวตรวจจับรังสีซึ่งจะหย่อนลงไปในหลุมเจาะเพื่อตรวจสอบคุณสมบัติของหินที่อยู่รอบเช่นความพรุนและการพิมพ์หิน[8].

การก่อสร้างถนน - เครื่องวัดความชื้น/ความหนาแน่นด้วยนิวเคลียร์ถูกใช้ในการกำหนดความหนาแน่นของดิน, ยางมะตอย, และคอนกรีต. โดยปกติจะใช้ ซีเซียม-137.

การประยุกต์ใช้ในงานเชิงพาณิชย์

  • การเรืองแสงด้วยรังสี (อังกฤษ: radioluminescence)
  • การส่องสว่างด้วย tritium: tritium ถูกใช้กับ phosphor ในกล้องเล็งของปืนเพื่อเพิ่มความแม่นยำในการยิงตอนกลางคืน. บางเครื่องหมายบนรันเวย์และป้ายบอกทางออกของอาคารจะใช้เทคโนโลยีเดียวกันนี้เพื่อให้ยังคงส่องสว่างในช่วงไฟดับ[9].
  • แบตเตอรีรังสีเบต้า (อังกฤษ: Betavoltaics).
  • ตัวตรวจจับควัน: ตัวตรวจจับควันแบบไอออไนซ์ประกอบด้วยมวลเล็กๆของสารกัมมันตรังสีอะเมริเซียม-241, ซึ่งเป็นแหล่งผลิตรังสีอัลฟา. ห้องที่มีการ Ionisation สองห้องจะอยู่ติดกัน. ทั้งสองห้องมีแหล่งผลิตขนาดเล็กของ 241Am ที่สร้างกระแสไฟฟ้าขนาดเล็กที่คงที่. ห้องหนึ่งจะปิดและทำหน้าที่เป็นตัวเปรียบเทียบ, อีกห้องหนึ่งจะเปิดให้อากาศโดยรอบข้างในมีขั้วไฟฟ้าแบบตะแกรง. เมื่อควันเข้ามาในห้องเปิด, กระแสจะชะงักเนื่องจากอนุภาคของควันไปติดกับไอออนที่มีประจุและส่งมันกลับไปสู่สถานะเป็นกลางทางไฟฟ้า. ปรากฏการณ์นี้จะช่วยลดกระแสในห้องเปิด. เมื่อกระแสลดลงต่ำกว่าเกณฑ์ที่กำหนด, เสียงเตือนภัยก็จะดัง.

การประมวลอาหารและการเกษตร

ในทางชีววิทยาและการเกษตร, การฉายรังสีถูกใช้เพื่อทำให้เกิดการกลายพันธุ์ในการผลิตหรือปรับปรุงสายพันธุ์ใหม่. อีกการใช้หนึ่งคือการควบคุมแมลงโดยใช้เทคนิคการทำหมันแมลง, โดยที่แมลงตัวผู้จะถูกทำหมันโดยการฉายรังสีและจะถูกปล่อยตัวออกไปเพื่อให้พวกมันจะไม่มีลูกหลานอีก, เป็นการลดจำนวนประชากร.

ในการประยุกต์ใช้ในงานอุตสาหกรรมและอาหาร, การฉายรังสีถูกใช้สำหรับการฆ่าเชื้อเครื่องมือและอุปกรณ์. ประโยชน์ก็คือวัตถุอาจถูกปิดผนึกอยู่ในถุงพลาสติกก่อนที่จะมีการฆ่าเชื้อ. การใช้งานที่เกิดขึ้นใหม่ในการผลิตอาหารคือการฆ่าเชื้ออาหารโดยใช้การฉายรังสีอาหาร (อังกฤษ: food irradiation).

โลโก้ Radura ใช้ในการแสดงอาหารได้รับการบำบัดด้วยรังสี

การฉายรังสีอาหาร[10] เป็นกระบวนการของการเปิดอาหารให้สัมผัสกับรังสีเพื่อฆ่าเชื้อแบคทีเรีย, ไวรัส, หรือแมลงที่อาจจะมีอยู่ในอาหาร. แหล่งสร้างรังสีที่ใช้คือแหล่งสร้างรังสีแกมมา radioisotope, ตัวกำเนิด X-ray และตัวเร่งอิเล็กตรอน. การประยุกต์ใช้งานเพิ่มเติมรวมถึงการยับยั้งการงอก, การถ่วงเวลาการสุก, การเพิ่มอัตราผลผลิตของน้ำผลไม้, และการปรับปรุงความชุ่มชื้น. การฉายรังสีเป็นคำทั่วไปมากขึ้นของการสัมผัสโดยเจตนาของวัสดุกับรังสีเพื่อให้บรรลุเป้าหมายทางเทคนิค (ในบริบทนี้หมายถึง 'รังสีแบบไอโอไนเซชั่น'). โดยวิธีการเช่นนี้, มันยังถูกนำมาใช้ในรายการที่ไม่ใช่อาหารอีกด้วย, เช่นฮาร์ดแวร์ทางการแพทย์, พลาสติก, ท่อก๊าซ, ท่อสำหรับให้ความร้อนแต่ละชั้นของอาคาร, ฟอยล์หดสำหรับบรรจุภัณฑ์อาหาร, ชิ้นส่วนรถยนต์, สายไฟและสายเคเบิล, ยาง และแม้กระทั่งอัญมณี. เมื่อเทียบกับปริมาณของอาหารที่ถูกฉายรังสี, ปริมาณการใช้ในแต่ละวันมีมาก, แต่ไม่ได้สังเกตโดยผู้บริโภค.

ผลกระทบของแท้ของการประมวลอาหารโดยการฉายรังสีจะเกี่ยวข้องกับความเสียหายที่เกิดกับดีเอ็นเอ, ข้อมูลทางพันธุกรรมพื้นฐานสำหรับชีวิต. จุลินทรีย์จะไม่สามารถขยายพันธ์และดำเนินการกิจกรรมของเชื้อโรคและความร้ายแรงของพวกมันได้อีกต่อไป. การเน่าเสียที่ก่อให้เกิดจุลินทรีย์ก็ไม่สามารถดำเนินกิจกรรมของพวกมันได้อีกต่อไป. แมลงไม่รอดหรือกลายเป็นหมดความสามารถในการให้กำเนิด. พืชไม่สามารถจะถูกทำให้สุกหรืออยู่ในกระบวนการชราได้ตามธรรมชาติ. ผลกระทบทั้งหมดเหล่านี้จะเป็นประโยชน์ต่อผู้บริโภคและอุตสาหกรรมอาหารเช่นเดียวกัน[10].

ปริมาณของพลังงานสำหรับการฉายรังสีอาหารที่มีประสิทธิภาพอยู่ในระดับต่ำเมื่อเทียบกับการประกอบอาหาร; แม้แต่ในปริมาณทั่วไปที่ 10 กิโลเกรย์สำหรับอาหารส่วนใหญ่, ซึ่งในทางกายภาพเทียบเท่ากับทำให้น้ำอุ่นขึ้นเพียงประมาณ 2.5 °C (4.5 °F).

การเป็นพิเศษของการประมวลอาหารโดยใช้รังสีที่เกิดจากการไอออไนเวชั่นคือความจริงที่ว่าความหนาแน่นของพลังงานต่อการเปลี่ยนแปลงอะตอมจะสูงมาก, มันสามารถแยกโมเลกุลและทำให้เกิดการไอออไนซ์ (เพราะฉะนั้นจึงได้ชื่อนี้) ซึ่งไม่สามารถทำได้ด้วยความร้อนเท่านั้น. นี่คือเหตุผลสำหรับผลจากประโยชน์ที่ได้ใหม่, แต่ในเวลาเดียวกัน, ก็เป็นเหตุผลสำหรับความกังวลใหม่. การบำบัดอาหารแข็งโดยรังสีไอออไนซ์สามารถให้ผลคล้ายกับการทำพาสเจอร์ไรซ์แบบความร้อนของของเหลว, เช่นนม. อย่างไรก็ตาม, การใช้คำว่าพาสเจอร์ไรซ์เย็นเพื่ออธิบายอาหารที่ผ่านการฉายรังสีทำให้เป็นที่ถกเถียงกัน, เพราะพาสเจอร์ไรซ์และการฉายรังสีเป็นกระบวนการที่แตกต่างกันโดยพื้นฐานอยู่แล้ว, ถึงแม้ว่าสุดท้ายความตั้งใจในบางกรณีอาจจะคล้ายกัน.

ผู้กล่าวร้ายของการฉายรังสีอาหารมีความกังวลเกี่ยวกับอันตรายต่อสุขภาพจากกัมมันตภาพรังสีที่ถูกสร้างขึ้นำ[ต้องการอ้างอิง]. นอกจากนี้, รายงานใหักับ 'สภาอเมริกันสำหรับวิทยาศาสตร์และสุขภาพ' ชื่อ "อาหารผ่านการฉายรังสี" กล่าวว่า: "ประเภทของแหล่งสร้างรังสีที่ได้รับการอนุมัติสำหรับการบำบัดอาหารมีระดับพลังงานที่เจาะจงต่ำกว่าขนาดที่อาจทำให้องค์ประกอบใดๆในอาหารกลายเป็นสารกัมมันตรังสี. อาหารที่ผ่านการฉายรังสีไม่ได้ปนเปื้อนกัมมันตรังสีมากไปกว่ากระเป๋าเดินทางผ่านสแกนเนอร์ X-ray ที่สนามบินหรือฟันที่ถูก X-ray"[11].

การฉายรังสีอาหารในขณะนี้ได้รับอนุญาตจากกว่า 40 ประเทศและปริมาณการคาดว่าจะเกิน 500,000 ตัน (490,000 ตันยาว; 550,000 ตันสั้น) เป็นประจำทุกปีทั่วโลก[12][13][14].

การฉายรังสีอาหารโดยหลักการเป็นเทคโนโลยีที่ไม่ใช่นิวเคลียร์. มันขึ้นอยู่กับการใช้รังสีที่อาจจะเกิดขึ้นจากเครื่องเร่งอนุภาคอิเล็กตรอนและการแปลงให้เป็น Bremsstrahlung (รังสีคลื่นแม่เหล็กไฟฟ้าที่ถูกปล่อยออกมา เมื่ออนุภาคที่มีประจุถูกเร่งให้เร็วขึ้น หรือถูกหน่วงให้ช้าลง รังสีเอกซ์จากเครื่องเอกซเรย์ทั่วไปก็เป็นรังสีชนิดนี้) แต่มันอาจจะยังใช้รังสีแกมมาจากการสลายตัวของนิวเคลียร์อีกด้วย. มีอุตสาหกรรมทั่วโลกที่ทำการประมวลโดยรังสีจากตัวเร่ง. การฉายรังสีอาหารเป็นเพียงการประยุกต์ใช้เฉพาะอย่าง (อังกฤษ: niche application) ชนิดหนึ่งเท่านั้นเมื่อเทียบกับการทำไปใช้กับอุปกรณ์การแพทย์, วัสดุพลาสติก, วัตถุดิบ, อัญมณี, สายเคเบิลและสายไฟอื่น ๆ

ใกล้เคียง

เทคโน เทคโนโลยีสารสนเทศ เทคโนโลยีชีวภาพ เทคโนโลยีนิวเคลียร์ เทคโนโลยี เทคโนโลยีการศึกษา เทคโนโลยีสารสนเทศและการสื่อสาร เทคโนโลยียานยนต์ เทคโนโลยีอวกาศ เทคโนโลยีเภสัชกรรม

แหล่งที่มา

WikiPedia: เทคโนโลยีนิวเคลียร์ http://www.physics.isu.edu/radinf/tritium.htm http://www.pubmedcentral.nih.gov/articlerender.fcg... http://www.rerf.or.jp/general/qa_e/qa1.html http://www.acsh.org/docLib/20040331_irradiated2003... http://www.doubleia.org/index.php?sectionid=43&par... http://hps.org/publicinformation/radterms/radfact1... http://nucleus.iaea.org/NUCLEUS/nucleus/Content/Ap... http://www.mindfully.org/Food/Irradiation-Position... http://nobelprize.org/nobel_prizes/physics/laureat... http://world-nuclear.org/info/inf34.html