ศักยภาพในการนำมาใช้งาน ของ แกรฟีน

แกรฟีนอยู่ในระหว่างการพัฒนาเพื่อนำไปใช้หลายอย่าง รวมถึง หน้าจอแสดงผล, วงจรไฟฟ้า, และเซลล์แสงอาทิตย์ ที่มีน้ำหนักเบา, บาง, ยืดหยุ่นแต่ยังคงทน เช่นเดียวกับ การแพทย์, กระบวนการทางสารเคมีและอุตสาหกรรมต่างๆ

ในปี 2013 นักวิจัยแกรฟีนนำโดยศาสตราจารย์ Jari Kinaret จากมหาวิทยาลัยเทคโนโลยี Chalmers ของสวีเดน ได้รับทุนมูลค่า 1 พันล้านยูโร จากสหภาพยุโรปสำหรับการวิจัยต่อเนื่องในการพัฒนาแกรฟีน ในปีเดียวกัน สมาคมเรือธงแกรฟีนถูกจัดตั้งประกอบด้วย มหาวิทยาลัยเทคโนโลยี Chalmers และ อีกเจ็ดมหาวิทยาลัยและศูนย์การวิจัยในยุโรป และ บริษัทโนเกียของฟินแลนด์ โนเกียยังได้ทำงานกับเทคโนโลยีแกรฟีนมาแล้วเป็นเวลาหลายปี

ทางการแพทย์

มีรายงานว่า แกรฟีนช่วยปรับปรุงปฏิกิริยาลูกโซ่พอลิเมอเรส หรือ PCR โดยการเพิ่ม ผลผลิตของดีเอ็นเอ การทดลองได้แสดงให้เห็นว่าการนำความร้อนที่โดดเด่นของแกรฟีน เป็นเหตุผลหลักที่อยู่เบื้องหลังผลลัพธ์ที่ได้นี้ นอกจากนี้ แกรฟีนยังให้ผลผลิตดีเอ็นเอ เทียบเท่ากับการควบคุมบวก ที่ลดลงถึง 65% ในรอบ PCR

แผงวงจรรวม

แกรฟีนมีคุณสมบัติในอุดมคติที่จะเป็นองค์ประกอบที่ดีของวงจรรวม แกรฟีนมีตัวขนส่งกระแสไฟฟ้าที่มีความคล่องตัวสูง และคลื่นรบกวนต่ำ ทำให้มันถูกนำมาใช้เป็นช่องทางในทรานซิสเตอร์แบบ FET ปัญหาก็คือแผ่นแกรฟีนเดี่ยวจะยากที่จะผลิต และยิ่งยากที่จะผลิต เหนือพื้นผิวที่เหมาะสม นักวิจัยกำลังมองหาวิธีการของการถ่ายโอนแผ่นกราฟีนเดี่ยวจาก แหล่งที่มาของมัน (การขัดด้วยกลไกบน SiO2/Si หรือการผลิตกราไฟต์ด้วยความร้อนของ พื้นผิว SiC) ลงบนพื้นผิวเป้าหมาย ในปี 2008 ทรานซิสเตอร์ที่เล็กที่สุดในเวลานั้น มีความหนาเพียงหนึ่งอะตอม, กว้าง 10 อะตอมทำจากแกรฟีน ไอบีเอ็มประกาศในเดือน ธันวาคม 2008 ว่าได้ประดิษฐ์ทรานซิสเตอร์ทำจากแกรฟีน ทำงานที่ความถี่ GHz ในเดือนพฤษภาคม 2009 ทรานซิสเตอร์ ชนิด n-type และ p -type ถูกประกาศว่าได้ถูกสร้างขึ้นด้วยแกรฟีน วงจรรวมที่ทำงานด้วยแกรฟีนก็ยังถูกสาธิตให้เห็นด้วยตัวอินเวอร์เตอร์ ที่ทำงานเสิมกัน ประกอบด้วยทรานซิสเตอร์แกรฟีนที่เป็น p-type หนึ่งตัว และ n-type หนึ่งตัว อย่างไรก็ตาม อินเวอร์เตอร์นี้ ให้โวลเตจเกนที่ต่ำมาก

ตามรายงานเดือน มกราคม 2010, แกรฟีนถูกสร้างขึ้นบนชั้นของ epitaxy บน SiC ใน ปริมาณและคุณภาพที่เหมาะสมสำหรับการผลิตวงจรรวมปริมาณมากๆ ที่อุณหภูมิสูง, ควอนตัม ฮอลล์ เอฟเฟ็กสามารถวัดได้ในตัวอย่างเหล่านี้ ดูเพิ่มเติมที่ งานของ IBM ปี 2010 ในส่วนทรานซิสเตอร์ข้างต้น ในที่ซึ่ง 'โปรเซสเซอร์' ของทรานซิสเตอร์ 100 GHz ถูกสร้างขึ้นบนแผ่นแกรฟีนขนาด 2 นิ้ว (51 มม.)

ในเดือนมิถุนายน 2011, นักวิจัยของไอบีเอ็มประกาศว่าได้ประสบความสำเร็จในการสร้างวงจรรวมจากแกรฟีนเป็นครั้งแรก โดยสร้างเป็นตัวผสมวิทยุบรอดแบนด์ วงจรสามารถจัดการกับความถี่ได้ถึง 10 GHz และประสิทธิภาพการทำงานจะไม่ได้รับผลกระทบกับ อุณหภูมิที่สูงถึง 127 องศาเซลเซียส

ใน มิถุนายน 2013, วงจร oscillator วงแหวน 1.28 GHz ที่ใช้ทรานซิสเตอร์ 8 ตัวก็ถูกสร้างขึ้น

ทรานซิสเตอร์

แกรฟีนได้แสดงให้เห็นถึงการตอบสนองที่เด่นชัดกับสนามไฟฟ้าภายนอกที่ตั้งฉาก ซึ่งมีศักยภาพในการสร้างทรานซิสเตอร์แบบ FET เอกสารในปี 2004 กล่าวว่า FETs มีอัตราส่วน เปิดปิดอยู่ที่ ~ 30 ที่อุณหภูมิห้อง เอกสารในปี 2006 ประกาศเรื่องทรานซิสเตอร์ FET ที่เป็นแกรฟีนทั้งตัวมีเกทอยู่ด้านข้าง อุปกรณ์แสดงให้เห็นถึงการเปลี่ยนแปลงที่ 2 % ที่อุณหภูมิแช่แข็ง FET ที่มีเกทด้านบนตัวแรก(อัตราการเปิดปิด <2) แสดงให้เห็นในปี 2007 nanoribbons Graphene อาจพิสูจน์โดยทั่วไปว่ามีความสามารถในการเป็นสารกึ่งตัวนำแทนซิลิกอน

เอกสารในปี 2008 แสดงให้เห็นถึง ผลของการสวิตชิ่งใหม่บนพื้นฐานของการเปลี่ยนแปลงทางเคมีที่ผันกลับของชั้นแกรฟีน ที่ให้อัตราการเปิดปิดที่มากขึ้นกว่าหกเท่า สวิทช์ที่กลับทางได้เหล่านี้อาจจะนำไปใช้กับเมมโมรี่แบบลบเลือน

ในปี 2009 นักวิจัยแสดงให้เห็นถึงลอจิกเกท สี่ประเภทที่แตกต่างกัน แต่ละประเภท ประกอบด้วยทรานซิสเตอร์ที่ใช้แกรฟีนเพียงตัวเดียว

การประยุกต์ใช้สำหรับวงจรเหล่านี้จะถูกจำกัดโดยโวลเตจเกนขนาดเล็กมาก โดยปกติแล้ว สัญญาณเอาต์พุตน้อยกว่าสัญญาณอินพุทถึง 40 เท่า นอกจากนี้ยังไม่มีวงจรใดที่ทำงานที่ ความถี่สูงกว่า 25 kHz

ในปีเดียวกัน การจำลองเชิงตัวเลขแสดงให้เห็นว่าช่องว่างของแถบที่เหนี่ยวนำในทรานซิสเตอร์แบบ FET ที่เป็นแกรฟีนสองชั้น ไม่ได้มีขนาดใหญ่พอสำหรับทรานซิสเตอร์ ที่มีประสิทธิภาพสูงสำหรับการใช้งานดิจิตอล แต่สามารถจะเพียงพอสำหรับการใช้งานที่ แรงดันไฟฟ้าที่ต่ำเป็นพิเศษ เมื่อการใช้ประโยชน์จากสถาปัตยกรรม tunnel-FET

ในกุมภาพันธ์ 2010 นักวิจัยประกาศเรื่องทรานซิสเตอร์ที่มีการเปิด/ปิดด้วยอัตรา 100 กิกะเฮิรตซ์, ซึ่งไกลเกินอัตราของความพยายามก่อนหน้านี้และเกินความเร็วของทรานซิสเตอร์ ซิลิคอนที่มีความยาวเกทเท่ากัน อุปกรณ์ขนาด 240 นาโนเมตรนี้ถูกสร้างขึ้นมาด้วยอุปกรณ์ ที่ใช้ในการผลิตซิลิกอนธรรมดา

ในพฤศจิกายน 2011 นักวิจัยได้ใช้การพิมพ์อิงค์เจ็ท (การผลิตสารเติมแต่ง) เป็นวิธีการที่ใช้สำหรับการผลิตอุปกรณ์แกรฟีน

ในปี 2013 นักวิจัยแสดงให้เห็นถึงความสามารถในการเคลื่อนตัวสูงของแกรฟีนในเครื่องตรวจจับ ที่ช่วยให้ความสามารถในการเลื่อกความถี่แถบกว้างในช่วงตั้งแต่ THz จนถึงช่วง IR (0.76-33THz) นักวิจัยอีกกลุ่มหนึ่งสร้างทรานซิสเตอร์ความเร็วสูงถึง Tara Hz ด้วยคุณ ลักษณะแบบ bistable ซึ่งหมายความว่าอุปกรณ์สามารถสลับระหว่างสองสถานะทางอิเล็กทรอนิกส์ด้วยตัวของมันเอง อุปกรณ์ประกอบด้วยสองชั้นของแกรฟีนที่แยกจากกันโดยชั้นฉนวนของโบรอนไนไตรด์ หนาเพียงไม่กี่อะตอม อิเล็กตรอนเคลื่อนที่ผ่านอุปสรรค นี้ได้โดยการขุดอุโมงค์ควอนตัม ทรานซิสเตอร์ใหม่เหล่านี้แสดง "conductance ความแตกต่างเชิงลบ" โดยที่การไหลของกระแสไฟฟ้าจะเท่ากัน ที่แรงดันที่จ่ายให้สองแรงดันที่แตกต่างกัน

ขั้วนำไฟฟ้าที่โปร่งใส

แกรฟีนมีการนำไฟฟ้าสูงและมีความโปร่งใสทางแสงสูง ทำให้มันเป็นขั้วไฟฟ้าโปร่งใสที่จำเป็นสำหรับการใช้งานเช่น หน้าจอสัมผัส (อังกฤษ: touchscreen), จอแสดงผลแบบคริสตัลเหลว, เซลล์แสงอาทิตย์แบบอินทรีย์ และไดโอดเปล่งแสงแบบอินทรีย์ (อังกฤษ: Organic light-emitting diode)โดยเฉพาะอย่างยิ่ง ความแข็งแรงทางกลของแกรฟีน และความยืดหยุ่นเป็นข้อได้เปรียบ เมื่อเทียบกับอินเดียมดีบุกออกไซด์ ซึ่งเปราะ และแผ่นฟิล์มแกรฟีนอาจถูกทิ้งไว้ในดินให้เป็นอาหารของพืชต่อไป

แผ่นฟิล์มแกรฟีนไม่กี่เลเยอร์ที่มีพื้นที่ขนาดใหญ่ติดกันอย่างต่อเนื่องโปร่งใสและมีการนำกระแสสูงจะถูกผลิตโดยไอสารเคมีสะสมและนำมาใช้เป็น anodes สำหรับการประยุกต์ใช้ ในอุปกรณ์ไฟฟ้าโซลาร์เซลล์ ประสิทธิภาพในการแปลงพลังงาน (PCE) สูงถึง 1.71 % ซึ่งเป็น 55.2 % ของ PCE ของอุปกรณ์ควบคุมบนพื้นฐานของอินเดียมทินออกไซด์

ไดโอดเปล่งแสงอินทรีย์ (OLEDs) ที่มี anodes เป็นแกรฟีนยังได้รับการสาธิตให้เห็นถึงประสิทธิภาพทางอิเล็กทรอนิกส์และทางออปติคอล ปรากฏว่าจะคล้ายกับอุปกรณ์ที่ทำด้วย อินเดียมดีบุกออกไซด์

อุปกรณ์ที่ทำจากคาร์บอนทั้งหมดที่เรียกว่าเซลล์ไฟฟ้าเคมีเปร่งแสง (LEC) ได้รับการสาธิต กับแกรฟีนที่ทำจากสารเคมี เพื่อเป็นแคโทดและ PEDOT โพลิเมอร์การนำไฟฟ้าเป็นขั้วบวก โดย Matyba กับพวก อุปกรณ์นี้แตกต่างจากรุ่นก่อนซึ่งรุ่นนี้จะประกอบด้วยอโลหะ มีแต่ขั้วไฟฟ้าคาร์บอนเท่านั้น การใช้งานของแกรฟีนเป็นขั้วบวกใน LECs ก็ยังได้รับการยืนยันในสิ่งพิมพ์เดียวกัน

การกลั่นเอทานอล

เยื่อออกไซด์ของแกรฟีนยอมให้ไอน้ำซึมผ่านไปได้ แต่ไม่ยอมให้ของเหลวหรือแก๊สอื่นแม้แต่ฮีเลียมซึมผ่านได้ ปรากฏการณ์นี้ได้ถูกนำมาใช้ในการกลั่นวอดก้าในขั้นตอนต่อไปเพื่อให้ได้ความเข้มข้นของแอลกอฮอล์ที่สูงขึ้น ในห้องปฏิบัติการที่อุณหภูมิห้อง โดยไม่ต้องมีการใส่ความร้อนหรือสูญญากาศในวิธีการกลั่นแบบดั้งเดิม การส่งเสริมการพัฒนา และการค้าของเยื่อดังกล่าวอาจปฏิวัติเศรษฐศาสตร์ของการผลิตเชื้อเพลิงชีวภาพและอุตสาหกรรมเครื่องดื่มแอลกอฮอล์

กระบวนการแยกเกลือออกจากน้ำ

การวิจัยแสดงให้เห็นว่าตัวกรองแกรฟีนจะมีประสิทธิภาพสูงกว่าเทคนิคอื่นๆอย่างมีนัยสำคัญ

เซลล์แสงอาทิตย์

แกรฟีนมีการผสมผสานที่เป็นเอกลักษณ์ของการนำไฟฟ้าสูงและความโปร่งใสของแสง ซึ่ง ทำให้มันเป็นตัวเลือกที่ดีสำหรับใช้ในเซลล์แสงอาทิตย์ แผ่นเดียวของแกรฟีนเป็นสารกึ่งตัวนำที่มี bandgap เป็นศูนย์ ที่ซึ่งตัวขนส่งประจุจะไม่ถูกกระจายไปทั่วพื้นที่ขนาดใหญ่ ซึ่งหมายความว่าการกระจัดกระจายของตัวขนส่งจะไม่เกิดขึ้น เนื่องจากวัสดุนี้จะดูดซับเพียง 2.3 % ของแสงที่ตามองเห็นเท่านั้น มันจึงเป็นตัวเลือกสำหรับการใช้งานในฐานะตัวนำไฟฟ้าโปร่งใส แกรฟีนสามารถประกอบขึ้นเป็นขั้วไฟฟ้าบางที่มีผิวเรียบ แต่ในทางปฏิบัติ แผ่นแกรฟีนบางๆที่ถูกผลิตผ่านขบวนการสารละลายจะประกอบด้วยข้อบกพร่องของตาข่าย และ จุดวงรอบเล็กๆที่ทำหน้าที่เป็นศูนย์รวมตัวใหม่ และลดการนำไฟฟ้าของวัสดุ ดังนั้น แผ่นบางเหล่านี้จะต้องถูกทำให้หนากว่าหนึ่งชั้นอะตอม เพื่อให้ได้ความหนืดที่ผิวที่สัมผัสได้ ความหนืดที่ถูกเพิ่มเข้าไปนี้สามารถถูกต่อต้านโดยการผสมผสานวัสดุเพิ่มการนำไฟฟ้า เช่นเมทริกซ์ซิลิกา การนำไฟฟ้าของฟิล์มแกรฟีนที่ถูกลดลงไปยังสามารถปรับปรุงให้ดีขึ้น โดยการติด​​โมเลกุลอโรเมทิกขนาดใหญ่เช่น เกลือโซเดียม pyrene -1- กรดซัลโฟนิก (Pys) และเกลือโซเดียม ของ 3,4,9,10 - perylenetetracarboxylic diimide bisbenzenesulfonic acid (PDI) โมเลกุลกรดอโรเมติกที่มีขนาดใหญ่เหล่านี้ ภายใต้อุณหภูมิสูงจะช่วยในการจับคู่แบบ π ของแผ่นฐานของแกรฟีนได้ดีขึ้น แผ่นแกรฟีนบางๆ มี ความโปร่งใสในระดับสูงในภูมิภาคที่ตามองเห็นได้และภูมืภาคใกล้อินฟราเรด และ นอกจากนี้ยังมีเสถียรภาพทางเคมีและความร้อนที่สูง

เพื่อให้แกรฟีนสามารถนำไปใช้ในเซลล์แสงอาทิตย์เชิงพาณิชย์ได้ การผลิตขนาดใหญ่ ของวัสดุจะต้องประสบความสำเร็จ อย่างไรก็ตาม การปอกเปลือกของ graphene pyrolytic ดูเหมือนว่าจะไม่ได้เป็นขั้นตอนง่ายๆในการยกระดับขึ้น วิธีทางเลือกที่มีศักยภาพ ในการผลิตที่สามารถปรับขนาดของแกรฟีนที่ได้รับการแนะนำ คือการสลายตัวทางความร้อนของ ซิลิกอนคาร์ไบด์

การใช้แกรฟีนที่นอกเหนือไปจากฐานะที่เป็นออกไซด์การนำกระแสที่มีความโปร่งใส (อังกฤษ: transparent conducting oxide) หรือ TCO มันยังได้แสดงความสามารถในการเคลื่อนประจุที่สูง อาจนำไปสู่ข้อสรุปว่า มันอาจจะสามารถถูกนำไปใช้เป็นตัวสะสมและขนส่งประจุในเซลล์แสงอาทิตย์ การใช้งานของแกรฟีนใน OPVs สำหรับเป็นวัสดุ photoactive ต้องปรับ bandgap ให้อยู่ในช่วงของ 1.4 - 1.9eV ในปี 2010 Yong & Tour ได้รายงานประสิทธิภาพของเซลล์แสงอาทิตย์แกรฟีนโครงสร้างนาโนเซลล์เดียว ได้กว่า 12% อ้างอิงถึงข้อเขียนเรื่องอนาคตของแกรฟีนใน OPV ของ P. Mukhopadhyay และ R. K. Gupta ว่า อาจจะเป็น "อุปกรณ์ในที่ซึ่งแกรฟีนกึ่งตัวนำถูกใช้เป็นวัสดุ photoactive และแกรฟีนโลหะถูกใช้เป็นขั้วไฟฟ้า"

ห้องปฏิบัติการโรงเรียนวิศวกรรม USC Viterbi ได้รายงานการผลิตขนาดใหญ่ของแผ่นฟิล์มแกรฟีนโปร่งใสมากจากไอสารเคมีสะสมในปี 2008 ในขั้นตอนนี้นักวิจัยได้สร้างแผ่น แกรฟีนบางเฉียบโดยตอนแรกเป็นการวางอะตอมของคาร์บอน ในรูปแบบของฟิล์มแกรฟีน บนแผ่นนิกเกิลจากก๊าซมีเทน แล้วพวกเขาก็วางชั้นป้องกันของเทอร์โมพลาสติคเหนือชั้น แกรฟีนและละลายนิกเกิลใต้อ่างน้ำกรด ในขั้นตอนสุดท้าย พวกเขาแนบแกรฟีนที่มีการป้องกันด้วยพลาสติกไปกับแผ่นโพลิเมอร์ที่มีความยืดหยุ่นมากซึ่งจากนั้นจะสามารถรวมตัวเข้าไปในเซลล์ OPV (photovoltaics graphene) แผ่นแกรฟีน/ลิเมอร์ถูกผลิตที่มีขนาด ใหญ่ถึง 150 ตารางเซนติเมตร และสามารถใช้ในการสร้างอาร์เรย์ที่มีความหนาแน่นของเซลล์ OPV มีความยืดหยุ่นได้ ในที่สุดมันก็อาจเป็นไปได้ที่จะสั่งแท่นพิมพ์เพื่อวางเซลล์แสงอาทิตย์ราคาไม่แพงให้ครอบคลุมพื้นที่กว้าง เหมือนเช่นการพิมพ์หนังสือพิมพ์บนหนังสือพิมพ์ (ม้วนต่อม้วน)

ในขณะที่ซิลิกอนได้เป็นมาตรฐานสำหรับเซลล์แสงอาทิตย์เชิงพาณิชย์มานาน, การวิจัย ใหม่จากสถาบันวิทยาศาสตร์แห่งโฟโทนิค (ICFO) ในสเปนได้แสดงให้เห็นว่า แกรฟีน สามารถพิสูจน์ว่ามันมีประสิทธิภาพสูงขึ้นมาก เมื่อมันเปลี่ยนแสงให้เป็นพลังงาน การศึกษาพบว่ามันแตกต่างจากซิลิกอนที่สร้างเพียงหนึ่งอิเล็กตรอนที่ขับกระแสสำหรับแต่ละโฟตอนที่มันดูดซับ แต่แกรฟีนสามารถสร้าางได้หลายอิเล็กตรอน เซลล์แสงอาทิตย์ที่ทำด้วยแกรฟีนสามารถให้มีประสิทธิภาพได้สูงถึง 60% - สองเท่าของประสิทธิภาพสูงสุดที่ซิลิกอนทำได้

การตรวจจับแก๊สโมเลกุลเดี่ยว

ส่วนนี้รอเพิ่มเติมข้อมูล คุณสามารถช่วยเพิ่มข้อมูลส่วนนี้ได้