อ้างอิง ของ Reticular_formation

  1. Purves, Dale; Augustine, George J; Fitzpatrick, David; Hall, William C; Lamantia, Anthony Samuel; Mooney, Richard D; Platt, Michael L; White, Leonard E, eds. (2018). "Chapter 17 - Upper Motor Neuron Control of the Brainstem and Spinal Cord". Neuroscience (6th ed.). Sinauer Associates. Motor Control Centers in the Brainstem: Upper Motor Neurons That Maintain Balance, Govern Posture, Initiate Locomotion, and Orient Gaze, pp. 397-403. ISBN 9781605353807.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Iwańczuk, W; Guźniczak, P (2015). "Neurophysiological foundations of sleep, arousal, awareness and consciousness phenomena. Part 1". Anaesthesiol Intensive Ther. 47 (2): 162–167. doi:10.5603/AIT.2015.0015. PMID 25940332. The ascending reticular activating system (ARAS) is responsible for a sustained wakefulness state. It receives information from sensory receptors of various modalities, transmitted through spinoreticular pathways and cranial nerves (trigeminal nerve — polymodal pathways, olfactory nerve, optic nerve and vestibulocochlear nerve — monomodal pathways). These pathways reach the thalamus directly or indirectly via the medial column of reticular formation nuclei (magnocellular nuclei and reticular nuclei of pontine tegmentum). The reticular activating system begins in the dorsal part of the posterior midbrain and anterior pons, continues into the diencephalon, and then divides into two parts reaching the thalamus and hypothalamus, which then project into the cerebral cortex (Fig. 1). The thalamic projection is dominated by cholinergic neurons originating from the pedunculopontine tegmental nucleus of pons and midbrain (PPT) and laterodorsal tegmental nucleus of pons and midbrain (LDT) nuclei [17, 18]. The hypothalamic projection involves noradrenergic neurons of the locus coeruleus (LC) and serotoninergic neurons of the dorsal and median raphe nuclei (DR), which pass through the lateral hypothalamus and reach axons of the histaminergic tubero-mamillary nucleus (TMN), together forming a pathway extending into the forebrain, cortex and hippocampus. Cortical arousal also takes advantage of dopaminergic neurons of the substantia nigra (SN), ventral tegmenti area (VTA) and the periaqueductal grey area (PAG). Fewer cholinergic neurons of the pons and midbrain send projections to the forebrain along the ventral pathway, bypassing the thalamus [19, 20].CS1 maint: Uses authors parameter (link)
  3. 1 2 3 4 Augustine (2008)
  4. "the definition of reticular activating system". Dictionary.com. Archived from the original on 2017-02-05.
  5. 1 2 Jones, BE (2008). "Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems". Annals of the New York Academy of Sciences. 1129 (1): 26–34. Bibcode:2008NYASA1129...26J. doi:10.1196/annals.1417.026. PMID 18591466.
  6. Purves et al (2018), Box 17C - The Reticular Formation, pp. 399-400 "serve a premotor function in the sense that they integrate feedback sensory signals with executive commands from upper motor neurons and deep cerebellar nuclei and, in turn, organize the efferent activities of lower visceral motor and certain somatic motor neurons in the brainstem and spinal cord. "
  7. 1 2 3 4 5 Saladin (2018b), The Reticular Formation, pp. 518-519
  8. "The Brain From Top To Bottom". Thebrain.mcgill.ca. Archived from the original on 2016-04-23. สืบค้นเมื่อ 2016-04-28.
  9. "The Benefits of Midbrain Activation". 2014-09-15. Archived from the original on 2017-09-30. สืบค้นเมื่อ 2017-07-05.
  10. 1 2 3 Mtui, Estomih; Gruener, Gregory; Dockery, Peter (2016). "Chapter 16 - Spinal Chord: Descending Pathways". FitzGerald's clinical neuroanatomy and neuroscience (7th ed.). Philadelphia: Elsevier. Reticulospinal tracts, pp. 173, 176. ISBN 978-0-7020-5832-5.
  11. 1 2 3 Hooper, Scott L. (1999–2010). "Central Pattern Generators". Encyclopedia of Life Sciences. John Wiley & Sons. doi:10.1038/npg.els.0000032. ISBN 978-0-470-01590-2.CS1 maint: Date format (link)
  12. 1 2 Kuo, AD (April 2002). "The relative roles of feedforward and feedback in the control of rhythmic movements" (PDF). Motor Control. 6 (2): 129–45. doi:10.1123/mcj.6.2.129. PMID 12122223.CS1 maint: Uses authors parameter (link)
  13. "Anatomy of the Brain - Reticular Formation". Biology.about.com. 2015-07-07. Archived from the original on 2003-04-14. สืบค้นเมื่อ 2016-04-28.
  14. 1 2 3 4 5 6 7 Malenka, RC; Nestler, EJ; Hyman, SE (2009). "Chapter 12: Sleep and Arousal". In Sydor, A; Brown, RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. p. 295. ISBN 9780071481274. The RAS is a complex structure consisting of several different circuits including the four monoaminergic pathways ... The norepinephrine pathway originates from the locus ceruleus (LC) and related brainstem nuclei; the serotonergic neurons originate from the raphe nuclei within the brainstem as well; the dopaminergic neurons originate in ventral tegmental area (VTA) ; and the histaminergic pathway originates from neurons in the tuberomammillary nucleus (TMN) of the posterior hypothalamus. As discussed in Chapter 6, these neurons project widely throughout the brain from restricted collections of cell bodies. Norepinephrine, serotonin, dopamine, and histamine have complex modulatory functions and, in general, promote wakefulness. The PT in the brain stem is also an important component of the ARAS. Activity of PT cholinergic neurons (REM-on cells) promotes REM sleep. During waking, REM-on cells are inhibited by a subset of ARAS norepinephrine and serotonin neurons called REM-off cells.CS1 maint: Uses authors parameter (link) CS1 maint: Uses editors parameter (link)
  15. 1 2 3 4 5 6 7 8 9 Brudzynski, SM (July 2014). "The ascending mesolimbic cholinergic system--a specific division of the reticular activating system involved in the initiation of negative emotional states". Journal of Molecular Neuroscience. 53 (3): 436–445. doi:10.1007/s12031-013-0179-1. PMID 24272957. Understanding of arousing and wakefulness-maintaining functions of the ARAS has been further complicated by neurochemical discoveries of numerous groups of neurons with the ascending pathways originating within the brainstem reticular core, including pontomesencephalic nuclei, which synthesize different transmitters and release them in vast areas of the brain and in the entire neocortex (for review, see Jones 2003; Lin et al. 2011). They included glutamatergic, cholinergic, noradrenergic, dopaminergic, serotonergic, histaminergic, and orexinergic systems (for review, see Lin et al. 2011). ... The ARAS represented diffuse, nonspecific pathways that, working through the midline and intralaminar thalamic nuclei, could change activity of the entire neocortex, and thus, this system was suggested initially as a general arousal system to natural stimuli and the critical system underlying wakefulness (Moruzzi and Magoun 1949; Lindsley et al. 1949; Starzl et al. 1951, see stippled area in Fig. 1). ... It was found in a recent study in the rat that the state of wakefulness is mostly maintained by the ascending glutamatergic projection from the parabrachial nucleus and precoeruleus regions to the basal forebrain and then relayed to the cerebral cortex (Fuller et al. 2011). ... Anatomical studies have shown two main pathways involved in arousal and originating from the areas with cholinergic cell groups, one through the thalamus and the other, traveling ventrally through the hypothalamus and preoptic area, and reciprocally connected with the limbic system (Nauta and Kuypers 1958; Siegel 2004). ... As counted in the cholinergic connections to the thalamic reticular nucleus ...CS1 maint: Uses authors parameter (link)
  16. 1 2 3 4 5 6 7 8 9 10 Schwartz, MD; Kilduff, TS (December 2015). "The Neurobiology of Sleep and Wakefulness". The Psychiatric Clinics of North America. 38 (4): 615–644. doi:10.1016/j.psc.2015.07.002. PMC 4660253. PMID 26600100. This ascending reticular activating system (ARAS) is comprised of cholinergic laterodorsal and pedunculopontine tegmentum (LDT/PPT), noradrenergic locus coeruleus (LC), serotonergic (5-HT) Raphe nuclei and dopaminergic ventral tegmental area (VTA), substantia nigra (SN) and periaqueductal gray projections that stimulate the cortex directly and indirectly via the thalamus, hypothalamus and BF.6, 12-18 These aminergic and catecholaminergic populations have numerous interconnections and parallel projections which likely impart functional redundancy and resilience to the system.6, 13, 19 ... More recently, the medullary parafacial zone (PZ) adjacent to the facial nerve was identified as a sleep-promoting center on the basis of anatomical, electrophysiological and chemo- and optogenetic studies.23, 24 GABAergic PZ neurons inhibit glutamatergic parabrachial (PB) neurons that project to the BF,25 thereby promoting NREM sleep at the expense of wakefulness and REM sleep. ... The Hcrt neurons project widely throughout the brain and spinal cord92, 96, 99, 100 including major projections to wake-promoting cell groups such as the HA cells of the TM,101 the 5-HT cells of the dorsal Raphe nuclei (DRN),101 the noradrenergic cells of the LC,102 and cholinergic cells in the LDT, PPT, and BF.101, 103 ... Hcrt directly excites cellular systems involved in waking and arousal including the LC,102, 106, 107 DRN,108, 109 TM,110-112 LDT,113, 114 cholinergic BF,115 and both dopamine (DA) and non-DA neurons in the VTA.116, 117CS1 maint: Uses authors parameter (link)
  17. 1 2 Squire, L (2013). Fundamental neuroscience (4th ed.). Amsterdam: Elsevier/Academic Press. p. 1095. ISBN 978-0-12-385-870-2.CS1 maint: Uses authors parameter (link)
  18. 1 2 3 4 Saper, CB; Fuller, PM (June 2017). "Wake-sleep circuitry: an overview". Current Opinion in Neurobiology. 44: 186–192. doi:10.1016/j.conb.2017.03.021. PMC 5531075. PMID 28577468. Parabrachial and pedunculopontine glutamatergic arousal system
    Retrograde tracers from the BF have consistently identified one brainstem site of input that is not part of the classical monoaminergic ascending arousal system: glutamatergic neurons in the parabrachial and pedunculopontine nucleus ... Juxtacellular recordings from pedunculopontine neurons have found that nearly all cholinergic neurons in this region, as well as many glutamatergic and GABAergic neurons, are most active during wake and REM sleep [25], although some of the latter neurons were maximally active during either wake or REM, but not both. ... [Parabrachial and pedunculopontine glutamatergic neurons] provide heavy innervation to the lateral hypothalamus, central nucleus of the amygdala, and BFCS1 maint: Uses authors parameter (link)
  19. 1 2 Pedersen, NP; Ferrari, L; Venner, A; Wang, JL; Abbott, SG; Vujovic, N; Arrigoni, E; Saper, CB; Fuller, PM (November 2017). "Supramammillary glutamate neurons are a key node of the arousal system". Nature Communications. 8 (1): 1405. Bibcode:2017NatCo...8.1405P. doi:10.1038/s41467-017-01004-6. PMC 5680228. PMID 29123082. Basic and clinical observations suggest that the caudal hypothalamus comprises a key node of the ascending arousal system, but the cell types underlying this are not fully understood. Here we report that glutamate-releasing neurons of the supramammillary region (SuMvglut2) produce sustained behavioral and EEG arousal when chemogenetically activated.CS1 maint: Uses authors parameter (link)
  20. 1 2 3 Burlet, S; Tyler, CJ; Leonard, CS (April 2002). "Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy". J. Neurosci. 22 (7): 2862–72. doi:10.1523/JNEUROSCI.22-07-02862.2002. PMID 11923451.CS1 maint: Uses authors parameter (link)
  21. Malenka, RC; Nestler, EJ; Hyman, SE (2009). "Chapter 12: Sleep and Arousal". In Sydor, A; Brown, RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York, USA: McGraw-Hill Medical. p. 295. ISBN 9780071481274. Orexin neurons are located in the lateral hypothalamus. They are organized in a widely projecting manner, much like the monoamines (Chapter 6), and innervate all of the components of the ARAS. They excite the REM-off monoaminergic neurons during wakefulness and the PT cholinergic neurons during REM sleep. They are inhibited by the VLPO neurons during NREM sleep.CS1 maint: Uses authors parameter (link) CS1 maint: Uses editors parameter (link)
  22. 1 2 Cherasse, Y; Urade, Y (November 2017). "Dietary Zinc Acts as a Sleep Modulator". International Journal of Molecular Sciences. 18 (11): 2334. doi:10.3390/ijms18112334. PMC 5713303. PMID 29113075. The regulation of sleep and wakefulness involves many regions and cellular subtypes in the brain. Indeed, the ascending arousal system promotes wakefulness through a network composed of the monaminergic neurons in the locus coeruleus (LC), histaminergic neurons in the tuberomammilary nucleus (TMN), glutamatergic neurons in the parabrachial nucleus (PB)  ...CS1 maint: Uses authors parameter (link)
  23. Fuller, PM; Fuller, P; Sherman, D; Pedersen, NP; Saper, CB; Lu, J (April 2011). "Reassessment of the structural basis of the ascending arousal system". The Journal of Comparative Neurology. 519 (5): 933–956. doi:10.1002/cne.22559. PMC 3119596. PMID 21280045.CS1 maint: Uses authors parameter (link)
  24. 1 2 Kinomura, S; Larsson, J; Gulyás, B; Roland, PE (January 1996). "Activation by attention of the human reticular formation and thalamic intralaminar nuclei". Science. 271 (5248): 512–5. Bibcode:1996Sci...271..512K. doi:10.1126/science.271.5248.512. PMID 8560267. This corresponds to the centro-median and centralis lateralis nuclei of the intralaminar group
  25. VandenBos, Gary R, ed. (2015). animal hypnosis. APA dictionary of psychology (2nd ed.). Washington, DC: American Psychological Association. p. 57. doi:10.1037/14646-000. ISBN 978-1-4338-1944-5. a state of motor nonresponsiveness in nonhuman animals, produced by stroking, salient stimuli, or physical restraint. It is called “hypnosis” because of a claimed resemblance to human hypnosis and trance.
  26. Svorad, D (January 1957). "Reticular activating system of brain stem and animal hypnosis". Science. 125 (3239): 156. Bibcode:1957Sci...125..156S. doi:10.1126/science.125.3239.156. PMID 13390978.CS1 maint: Uses authors parameter (link)
  27. 1 2 Jang, SH; Kwon, HG (October 2015). "The direct pathway from the brainstem reticular formation to the cerebral cortex in the ascending reticular activating system: A diffusion tensor imaging study". Neurosci. Lett. 606: 200–3. doi:10.1016/j.neulet.2015.09.004. PMID 26363340.CS1 maint: Uses authors parameter (link)
  28. Purves et al (2018b), Box 28A - Electroencephalography, pp. 647-649
  29. 1 2 Steriade, M. (1996). "Arousal: Revisiting the reticular activating system". Science. 272 (5259): 225–226. Bibcode:1996Sci...272..225S. doi:10.1126/science.272.5259.225. PMID 8602506.
  30. 1 2 Reiner, P. B. (1995). "Are mesopontine cholinergic neurons either necessary or sufficient components of the ascending reticular activating system?". Seminars in the Neurosciences. 7 (5): 355–359. doi:10.1006/smns.1995.0038.
  31. 1 2 3 Evans, B.M. (2003). "Sleep, consciousness and the spontaneous and evoked electrical activity of the brain. Is there a cortical integrating mechanism?". Neurophysiologie Clinique. 33 (1): 1–10. doi:10.1016/s0987-7053(03)00002-9. PMID 12711127.
  32. Purves et al (2018b), The Neural Circuits Governing Sleep, pp. 655-656
  33. Kumar, Mohan V; Mallick, BN; Chhina, GS; Singh, B (October 1984). "Influence of ascending reticular activating system on preoptic neuronal activity". Exp. Neurol. 86 (1): 40–52. doi:10.1016/0014-4886(84)90065-7. PMID 6479280.CS1 maint: Uses authors parameter (link)
  34. Tindall, SC (1990). "Chapter 57: Level of Consciousness". In Walker, HK; Hall, WD; Hurst, JW. Clinical Methods: The History, Physical, and Laboratory Examinations. Butterworth Publishers. Archived from the original on 2009-01-29. สืบค้นเมื่อ 2008-07-04.CS1 maint: Uses editors parameter (link)
  35. Nolte, J (ed.). "chpt 11". The Human Brain: An Introduction to its Functional Anatomy (5th ed.). pp. 262–290.
  36. Ruth, RE; Rosenfeld, JP (October 1977). "Tonic reticular activating system: relationship to aversive brain stimulation effects". Exp. Neurol. 57 (1): 41–56. doi:10.1016/0014-4886(77)90043-7. PMID 196879.CS1 maint: Uses authors parameter (link)
  37. Robinson, D. (1999). "The technical, neurological and psychological significance of 'alpha', 'delta' and 'theta' waves confounded in EEG evoked potentials: a study of peak latencies". Clinical Neurophysiology. 110 (8): 1427–1434. doi:10.1016/S1388-2457(99)00078-4. PMID 10454278.
  38. Lawrence, Eleanor, ed. (2005). electrical coupling. Henderson’s dictionary of biology (13th ed.). Pearson Education Limited. p. 195. ISBN 978-0-13-127384-9.
  39. Garcia-Rill, E; Heister, DS; Ye, M; Charlesworth, A; Hayar, A (2007). "Electrical coupling: novel mechanism for sleep-wake control". Sleep. 30 (11): 1405–1414. doi:10.1093/sleep/30.11.1405. PMC 2082101. PMID 18041475.CS1 maint: Uses authors parameter (link)
  40. 1 2 Schwartz, JR; Roth, T (December 2008). "Neurophysiology of sleep and wakefulness: basic science and clinical implications". Curr Neuropharmacol. 6 (4): 367–78. doi:10.2174/157015908787386050. PMC 2701283. PMID 19587857.CS1 maint: Uses authors parameter (link)
  41. Vincent, S. R. (2000). "The ascending reticular activating system - from aminergic neurons to nitric oxide". Journal of Chemical Neuroanatomy. 18 (1–2): 23–30. doi:10.1016/S0891-0618(99)00048-4. PMID 10708916.
  42. Hall, RW; Huitt, TW; Thapa, R; Williams, DK; Anand, KJ; Garcia-Rill, E (June 2008). "Long-term deficits of preterm birth: evidence for arousal and attentional disturbances". Clin Neurophysiol. 119 (6): 1281–91. doi:10.1016/j.clinph.2007.12.021. PMC 2670248. PMID 18372212.CS1 maint: Uses authors parameter (link)
  43. Garcia-Rill, E; Buchanan, R; McKeon, K; Skinner, RD; Wallace, T (September 2007). "Smoking during pregnancy: postnatal effects on arousal and attentional brain systems". Neurotoxicology. 28 (5): 915–23. doi:10.1016/j.neuro.2007.01.007. PMC 3320145. PMID 17368773.CS1 maint: Uses authors parameter (link)
  44. 1 2 3 Squire, L (2013). Fundamental neuroscience (4th ed.). Amsterdam: Elsevier/Academic Press. pp. 631–632. ISBN 978-0-12-385-870-2.CS1 maint: Uses authors parameter (link)
  45. Augustine (2008), 9.3. DESCENDING RETICULAR SYSTEM, p. 158
  46. Michael-Titus et al (2010b), Table 9.2 summary of the main functions of the descending tracts, p. 168
  47. Michael-Titus et al (2010a), Modulating spinal and cranial motor functions (muscle tone, reflexes and body posture), p. 112
  48. Saladin (2018a), Descending tracts, pp. 479-480
  49. Pearson, Keir G; Gordon, James E (2013). "Chapter 41 / Posture". In Kandel, Eric R; Schwartz, James H; Jessell, Thomas M; Siegelbaum, Steven A; Hudspeth, AJ. Principles of Neural Science (5th ed.). United State of America: McGraw-Hill. The Brain Stem and Cerebellum Integrate Sensory Signals for Posture, p. 954. ISBN 978-0-07-139011-8.
  50. 1 2 3 Michael-Titus et al (2010b), Box 9.5 Decorticate and decrebrate regidity, p. 172
  51. 1 2 Magoun, HW (February 1952). "An ascending reticular activating system in the brain stem". AMA Arch Neurol Psychiatry. 67 (2): 145–54, discussion 167-71. doi:10.1001/archneurpsyc.1952.02320140013002. PMID 14893989.CS1 maint: Uses authors parameter (link)

อ้างอิงอื่น ๆ

Human Neuroanatomy (2008)
  • Augustine, James R. (2008). "Chapter 9 - The Reticular Formation". Human Neuroanatomy. San Diego, CA: Academic Press. ISBN 978-0-12-068251-5.
Systems of The Body (2010)
  • Michael-Titus, Adina T; Revest, Patricia; Shortland, Peter, eds. (2010a). "Chapter 6 - Cranial Nerves and the Brainstem". Systems of The Body: The Nervous System - Basic Science and Clinical Conditions (2nd ed.). Churchill Livingstone. ISBN 9780702033735.
  • Michael-Titus, Adina T; Revest, Patricia; Shortland, Peter, eds. (2010b). "Chapter 9 - Descending Pathways and Cerebellum". Systems of The Body: The Nervous System - Basic Science and Clinical Conditions (2nd ed.). Churchill Livingstone. ISBN 9780702033735.
Neuroscience (2018)
  • Purves, Dale; Augustine, George J; Fitzpatrick, David; Hall, William C; Lamantia, Anthony Samuel; Mooney, Richard D; Platt, Michael L; White, Leonard E, eds. (2018b). "Chapter 28 - Cortical State". Neuroscience (6th ed.). Sinauer Associates. ISBN 9781605353807.
Anatomy and Physiology (2018)
  • Saladin, KS (2018a). "Chapter 13 - The Spinal Chord, Spinal Nerves, and Somatic Reflexes". Anatomy and Physiology: The Unity of Form and Function (8th ed.). New York: McGraw-Hill. ISBN 978-1-259-27772-6.
  • Saladin, KS (2018b). "Chapter 14 - The Brain and Cranial Nerves". Anatomy and Physiology: The Unity of Form and Function (8th ed.). New York: McGraw-Hill. The Reticular Formation, pp. 518-519. ISBN 978-1-259-27772-6.

แหล่งที่มา

WikiPedia: Reticular_formation http://thebrain.mcgill.ca/flash/a/a_11/a_11_cr/a_1... http://biology.about.com/library/organs/brain/blre... http://www.dictionary.com/browse/reticular-activat... http://adsabs.harvard.edu/abs/1957Sci...125..156S http://adsabs.harvard.edu/abs/1996Sci...271..512K http://adsabs.harvard.edu/abs/1996Sci...272..225S http://adsabs.harvard.edu/abs/2008NYASA1129...26J http://adsabs.harvard.edu/abs/2017NatCo...8.1405P http://www-personal.umich.edu/~artkuo/Papers/MC02.... //www.ncbi.nlm.nih.gov/pmc/articles/PMC2082101