จำนวนสมบูรณ์คู่ ของ จำนวนสมบูรณ์

ยุคลิดได้ค้นพบว่า จำนวนสมบูรณ์สี่ตัวแรกนั้นสามารถหาโดยใช้สูตร 2n−1(2n − 1) ได้

สำหรับ n = 2:   21(22 − 1) = 6สำหรับ n = 3:   22(23 − 1) = 28สำหรับ n = 5:   24(25 − 1) = 496สำหรับ n = 7:   26(27 − 1) = 8128

สังเกตว่าในแต่ละตัวอย่างที่ยกมา 2n − 1 จะเป็นจำนวนเฉพาะเท่านั้น ยุคลิดได้พิสูจน์ว่า ถ้า 2n − 1 เป็นจำนวนเฉพาะแล้ว สูตร 2n−1(2n − 1) จะให้ผลลัพธ์เป็นจำนวนสมบูรณ์คู่เสมอ

นักคณิตศาสตร์สมัยก่อน ได้ตั้งสมมติฐานเกี่ยวกับจำนวนสมบูรณ์จากจำนวนสมบูรณ์ที่เขารู้เพียง 4 ตัว ซึ่งสมมติฐานที่เขาได้ตั้งส่วนใหญ่จะผิด เช่น สมมติฐานที่ว่า เพราะว่า n = 2, 3, 5, 7 เป็นจำนวนเฉพาะ 4 ตัวแรก ที่นำไปแทนในสูตรแล้วได้ผลลัพธ์เป็นจำนวนสมบูรณ์ ดังนั้น n = 11 ซึ่งเป็นจำนวนเฉพาะตัวที่ 5 จะทำให้ได้ผลลัพธ์เป็นจำนวนสมบูรณ์เช่นกัน อย่างไรก็ตาม 211 − 1 = 2047 = 23 · 89 ซึ่งไม่เป็นจำนวนเฉพาะ ดังนั้น สมมติฐานนี้จึงผิด สมมติฐานที่ผิดอีกสองข้อ ได้แก่

  • จำนวนสมบูรณ์ตัวที่ 5 จะต้องมี 5 หลัก เพราะว่าจำนวนสมบูรณ์ 4 ตัวแรกมี 1, 2, 3, 4 หลัก ตามลำดับ
  • จำนวนสมบูรณ์จะลงท้ายด้วยเลข 6 หรือ 8 สลับกันเสมอ

จำนวนสมบูรณ์ตัวที่ห้า ( 33550336 = 2 12 ( 2 13 − 1 ) {\displaystyle 33550336=2^{12}(2^{13}-1)} ) มี 8 หลัก ดังนั้นสมมติฐานข้อแรกจึงผิด. สำหรับสมมติฐานข้อสองนั้น แม้ว่าจำนวนสมบูรณ์ตัวที่ห้า จะลงท้ายด้วยเลข 6 แต่จำนวนสมบูรณ์ตัวที่หก (8 589 869 056) ไม่ได้ลงท้ายด้วยเลข 8 สมมติฐานข้อสองจึงผิด. เราสามารถพิสูจน์ได้ว่าจำนวนสมบูรณ์จะมีเลขหลักสุดท้ายเป็น 6 หรือ 8 เสมอ (แต่ไม่จำเป็นต้องสลับกัน)

คุณสมบัติของจำนวนสมบูรณ์อันหนึ่งที่น่าสนใจก็คือ ส่วนกลับของตัวประกอบของจำนวนสมบูรณ์ จะรวมกันได้ 2 เสมอ เช่น

  • สำหรับ 6, จะได้ 1 / 6 + 1 / 3 + 1 / 2 + 1 / 1 = 2 {\displaystyle 1/6+1/3+1/2+1/1=2}
  • สำหรับ 28, จะได้ 1 / 28 + 1 / 14 + 1 / 7 + 1 / 4 + 1 / 2 + 1 / 1 = 2 {\displaystyle 1/28+1/14+1/7+1/4+1/2+1/1=2}