สมบัติ ของ ซิงเกิลตัน

ตามทฤษฎีเซตของเซอร์เมโล-แฟรนเคลนั้น สัจพจน์ความสม่ำเสมอนั้นเป็นตัวพิสูจน์ว่าไม่มีเซตไหนที่จะบรรจุสมาชิกตัวเองลงไป ซึ่งช่วยอธิบายว่าเซตโทนนั้นแตกต่างจากสมาชิกในเซตของตัวเองมาก[1] ดังนั้น 1 และ {1} ไม่เหมือนกัน และเซตว่างก็แตกต่างจากเซตที่มีสมาชิกเป็นเซตว่าง เช่นเดียวกับ {{1, 2, 3,}} เป็นเซตโทนที่มีสมาชิกเพียงหนึ่งเดียว (ซึ่งตัวมันเองเป็นเซต ไม่ใช่เซตโทน)

ภาวะเชิงการนับของเซตที่เป็นเซตโทนของ "ก็ต่อเมื่อ" คือ 1 ตามทฤษฎีโครงสร้างเซตตามธรรมชาติของบอนนิวมันน์ เลข 1 ได้กำหนดให้เป็นเซตโทนคือ {0}

สัจพจน์ของทฤษฎีเซต : การมีอยู่ของเซตโทนเป็นลำดับของสัจพจน์การจับคู่ : สำหรับเซต A ใด ๆ สัจพจน์นี้จะใช้กับ A และ A โดยจะอ้างถึง {A, A} ซึ่งมีความหมายเดียวกับเซตโทน {A} (เพราะมีแต่สมาชิก A ไม่มีเซตอื่นเป็นสมาชิก)

ถ้า A เป็นเซตใด ๆ และ S เป็นเซตโทนใด ๆ แล้วจะมีฟังก์ชันจาก A ถึง S ที่ส่งสมาชิกทุก ๆ สมาชิกของ A ไปยังสมาชิกหนึ่งของ S ดังนั้น ทุก ๆ เซตโทน จะมีวัตถุสุดท้าย (Terminal Object) ในลำดับของเซต

เซตโทนมีสมบัติที่ว่าทุก ๆ ฟังก์ชันที่มาจากตัวมันเองสู่เซตใด ๆ จะเป็นแบบหนึ่งต่อหนึ่ง เซตที่ไม่ใช่เซตโทนที่มีคุณสมบัติเดียวกันข้างต้นคือเซตว่าง