ประวัติ ของ ฟิสิกส์นิวเคลียร์

อองรี เบคเคอเรล (Henri Becquerel) นักฟิสิกส์ชาวฝรั่งเศส เป็นผู้ค้นพบกัมมันตภาพรังสีในสารประกอบยูเรเนียม เรียกว่า รังสียูเรนิก ในขณะที่ทำการวิเคราะห์เกี่ยวกับรังสีเอกซ์ กัมมันตภาพรังสีมีสมบัติแตกต่างจากรังสีเอกซ์ คือ มีความเข้มน้อยกว่ารังสีเอกซ์ การแผ่รังสีเกิดขึ้นอย่างต่อเนื่องตลอดเวลา

ประวัติที่มาของฟิสิกส์นิวเคลียร์แตกต่างจากฟิสิกส์ของอะตอมเริ่มต้นด้วยการค้นพบของกัมมันตภาพรังสีโดย อองรี Becquerel ในปี 1896[1] ขณะที่กำลังสืบสวนการเรืองแสงของฟอสฟอรัส (อังกฤษ: phosphorescence) ในเกลือยูเรเนียม[2] การค้นพบอิเล็กตรอนโดยนายเจ เจ ทอมสัน[3] ในหนึ่งปีต่อมาก็บ่งชี้ว่าอะตอมมีโครงสร้างภายใน ในตอนต้นของศตวรรษที่ 20 รูปแบบที่ได้รับการยอมรับของอะตอมเป็นรูปแบบพลัมพุดดิ้งของเจเจทอมสันในที่ซึ่งอะตอมเป็นลูกกลมขนาดใหญ่ที่มีประจุบวกและมีอิเล็กตรอนประจุลบขนาดเล็กที่ฝังอยู่ภายในของมัน

หลายปีต่อมา ปรากฏการณ์ของกัมมันตภาพรังสีได้ถูกตรวจสอบอย่างกว้างขวาง ที่สะดุดตาก็เป็นของทีมงานสามีภรรยาปิแอร์ กูรีและมารี กูรี และของเออร์เนส รัทเธอร์ฟอร์ดและเพื่อนร่วมงานของเขา ในช่วงเปลี่ยนของศตวรรษ นักฟิสิกส์ยังได้ค้นพบสามชนิดของการแผ่รังสีที่เล็ดลอดออกมาจากอะตอม พวกมันมีชื่อว่าอนุภาคแอลฟา อนุภาคบีตา และรังสีแกมมา การทดลองในปี 1911 โดยอ็อตโต ฮาห์นและเจมส์ แชดวิค ได้ค้นพบในปี 1914 ว่าสเปคตรัมการสลายให้อนุภาคบีตาเป็นอย่างต่อเนื่องมากกว่าที่จะไม่ต่อเนื่อง นั่นคืออิเล็กตรอนจะถูกปลดปล่อยออกมาจากอะตอมที่มีช่วงหนึ่งของพลังงานมากกว่าจะเป็นปริมาณที่ไม่ต่อเนื่องของพลังงานที่ถูกสังเกตในการสลายได้รังสีแกมมาและการสลายให้อนุภาคแอลฟา นี่เป็นปัญหาหนึ่งสำหรับฟิสิกส์นิวเคลียร์ในช่วงเวลานั้น เพราะมันดูเหมือนจะบ่งบอกถึงพลังงานที่ไม่มีการอนุรักษ์ (พลังงานออกไม่เท่ากับพลังงานเข้า) ในการสูญสลายเหล่านี้

รางวัลโนเบลปี 1903 ในสาขาฟิสิกส์ได้มอบให้กับนาย Becquerel สำหรับการค้นพบของเขา ร่วมกับนายปิแอร์ กูรีและนางมารี กูรีสำหรับการวิจัยที่ตามมาของพวกเขาเกี่ยวกับกัมมันตภาพรังสี นายรัทเธอร์ฟอร์ดก็ได้รับรางวัลโนเบลในสาขาเคมีในปี 1908 สำหรับ'การสอบสวนเกี่ยวกับการสลายตัวขององค์ประกอบและคุณสมบัติทางเคมีของสารกัมมันตรังสี'ของเขา

ในปี 1905 Albert Einstein จัดรูปแบบความคิดของการสมดุลมวล-พลังงาน ในขณะที่งานด้านกัมมันตภาพรังสีของ Becquerel และมารี กูรี ได้ถือกำเนิดมาก่อน คำอธิบายของแหล่งที่มาของการใช้พลังงานของกัมมันตภาพรังสีจะต้องรอการค้นพบที่ว่าตัวนิวเคลียสเองก็ประกอบด้วยองค์ประกอบขนาดเล็กกว่า ที่เรียกว่า นิวคลีออน

ทีมงานของรัทเธอร์ค้นพบนิวเคลียส

ในปี 1907 นายเออร์เนส รัทเธอร์ฟอร์ด ได้ตีพิมพ์ "การแผ่รังสีของอนุภาค α จากเรเดียมผ่านทะลุสสาร"[4] นายฮันส์ ไกเกอร์ ได้ขยายการทำงานนี้เข้าไปในการสื่อสารให้กับราชสโมสร[5] ที่มีการทดลองที่เขาและรัทเธอร์ฟอร์ดได้ทำมา โดยการผ่านอนุภาค α ผ่านอากาศ อะลูมิเนียมและแผ่นทอง การทำงานมากขึ้นถูกตีพิมพ์ในปี 1909 โดยนายไกเกอร์และนาย Marsden[6] และการทำงานที่ขยายตัวออกไปอย่างมากถูกตีพิมพ์ในปี 1910 โดยนายไกเกอร์[7] ในปี 1911-1912 นายรัทเธอร์ฟอร์ดได้อธิบายต่อหน้าราชสโมสรเรื่องการทดลองและนำเสนอทฤษฎีใหม่ของอะตอมของนิวเคลียสอย่างที่เราเข้าใจมันในตอนนี้

การทดลองที่สำคัญที่อยู่เบื้องหลังการประกาศครั้งนี้เกิดขึ้นในปี 1910 ที่มหาวิทยาลัยแมนเชสเตอร์ อย่างที่ทีมของเออร์เนส รัทเธอร์ฟอร์ดได้ดำเนินการทดลองที่น่าทึ่ง โดยที่นายฮันส์ ไกเกอร์และนายเออร์เนส Marsden ภายใต้การดูแลของเขาได้ยิงอนุภาคแอลฟา (นิวเคลียสของฮีเลียม) ไปที่ฟิล์มบางของฟอยล์ทองคำ 'รูปแบบของพลัมพุดดิ้ง' คาดการณ์ว่าอนุภาคแอลฟาน่าจะออกมาจากฟอยล์ที่มีวิถีโค้งของพวกมันงอเล็กน้อยเป็นส่วนใหญ่ รัทเธอร์ฟอร์ดมีความคิดที่จะสั่งให้ทีมงานของเขาที่จะมองหาบางสิ่งที่ตกใจเขาจะสังเกตเห็นจริง: อนุภาคไม่กี่ตัวกระจัดกระจายทะลุมุมขนาดใหญ่ แม้แต่วิ่งกลับหลังอย่างสมบูรณ์ในบางกรณี เขาเปรียบมันกับการยิงกระสุนไปที่กระดาษทิชชูและเห็นมันสะท้อนกลับ การค้นพบที่เริ่มต้นด้วยการวิเคราะห์ข้อมูลของ Rutherford ในปี 1911 ในที่สุดนำไปสู่ Rutherford model ของอะตอมที่อะตอมมีขนาดที่เล็กมาก นิวเคลียสที่หนาแน่นมากประกอบด้วยมวลของมันเป็นส่วนใหญ่ และที่ประกอบด้วยอนุภาคหนักที่มีประจุบวกกับอิเล็กตรอนที่ฝังตัวเพื่อที่จะสร้างความสมดุลของประจุรวม (เนื่องจากตอนนั้นนิวตรอนยังไม่เป็นที่รู้จัก) ตัวอย่างเช่นในรูปแบบนี้ (ซึ่งไม่ได้เป็นแบบที่ทันสมัย) ไนโตรเจน-14 ประกอบด้วยหนึ่งนิวเคลียสที่มี 14 โปรตอนและ 7 อิเล็กตรอน (อนุภาครวมเป็น 21) และนิวเคลียสถูกล้อมรอบด้วยอีก 7 อิเล็กตรอนที่โคจรล้อมรอบ

Rutherford model ทำงานได้ค่อนข้างดีจนกระทั่งการศึกษาของสปินนิวเคลียร์ (อังกฤษ: nuclear spin) ได้มีการดำเนินการโดยนายฝรังโก Rasetti ที่สถาบันเทคโนโลยีแคลิฟอร์เนียในปี 1929 โดยในปี 1925 เป็นที่รู้จักกันว่าโปรตอนและอิเล็กตรอนมีสปินเท่ากับ 1/2 และใน Rutherford model ของไนโตรเจน-14, 20 จากทั้งหมด 21 อนุภาคนิวเคลียร์ควรจะมีการจับคู่กันเพื่อหักล้างการสปินของกันและกัน และอนุภาคแปลกสุดท้ายควรจะเหลือนิวเคลียสที่มีสปินสุทธิเท่ากับ 1/2 อย่างไรก็ตาม Rasetti ค้นพบว่าไนโตรเจน-14 มีสปินเท่ากับ 1

เจมส์ Chadwick ค้นพบนิวตรอน

ในปี 1932 Chadwick ตระหนักว่าการแผ่รังสีที่ได้รับการตรวจสอบโดยนายวอลเธอร์ Bothe นายเฮอร์เบิร์ท เบกเกอร์ นางไอรีนและนาย Frédéric Joliot-Curie เป็นจริงเนื่องจากอนุภาคที่เป็นกลางที่มีมวลเหมือนกับโปรตอน ที่เขาเรียกว่านิวตรอน (ตามข้อเสนอแนะเกี่ยวกับความจำเป็นสำหรับอนุภาคดังกล่าวโดย Rutherford)[8] ในปีเดียวกันนาย Dmitri Ivanenko แนะนำว่านิวตรอนที่จริงเป็นอนุภาคที่มีสปินเท่ากับ 1/2 และแนะนำอีกว่านิวเคลียสที่มีนิวตรอนเพื่อที่จะอธิบายว่ามวลไม่ได้มีแต่โปรตอนเท่านั้น และว่าไม่มีอิเล็กตรอนในนิวเคลียส - มีแต่โปรตอนและนิวตรอนเท่านั้น สปินของนิวตรอนแก้ปัญหาได้ทันทีในปัญหาของสปินของไนโตรเจน-14 โดยเป็นโปรตอนไม่จับคู่หนึ่งตัวกับนิวตรอนไม่จับคู่อีกหนึ่งตัว แต่ละตัวมีสปินที่ 1/2 ในทิศทางเดียวกัน ทำให้สปินรวมสุดท้ายเท่ากับ 1

กับการค้นพบนิวตรอน นักวิทยาศาสตร์ในที่สุดก็สามารถคำนวณสิ่งที่เป็นส่วนย่อยของพลังงานยึดเหนี่ยวที่แต่ละนิวเคลียสมีอยู่ จากการเปรียบเทียบมวลของนิวเคลียสกับมวลของโปรตอนและนิวตรอนที่ประกอบเป็นนิวเคลียสขึ้นมา ความแตกต่างระหว่างมวลของนิวเคลียสจะถูกคำนวณในลักษณะนี้และ เมื่อปฏิกิริยานิวเคลียร์ถูกวัด ถูกพบว่าเป็นไปตามการคำนวณของ Einstein ของความเท่าเทียมกันของมวลและพลังงานภายใน 1% ณ ปี 1934

สมการสนาม boson เวกเตอร์ขนาดใหญ่ของ Proca

อเล็กซานเดอร์ Proca เป็นคนแรกที่พัฒนาและรายงานสมการสนาม boson เวกเตอร์ ขนาดใหญ่ (อังกฤษ: equations of the massive vector boson field) และทฤษฎีของสนาม mesonic ของแรงนิวเคลียร์ สมการของ Proca ของเป็นที่รู้จักโดย Wolfgang Pauli[9] เขากล่าวถึงสมการที่พูดถึงในรางวัลโนเบลของเขา และสมการเหล่านี้ก็ยังเป็นที่รู้จักโดย Yukawa, Wentzel, Taketani, Sakata, Kemmer, Heitler และ Fröhlich ผู้ที่ชื่นชมเนื้อหาของสมการของ Proca สำหรับการพัฒนาทฤษฎีของนิวเคลียสของอะตอมในฟิสิกส์นิวเคลียร์[10][11][12][13][14]

meson ของ Yukawa ถูกตั้งสมมติฐานในการยึดเหนี่ยวหลายนิวเคลียสเข้าด้วยกัน

ในปี 1935 นายฮิเดกิ ยูกาวะ[15] ได้นำเสนอทฤษฎีสำคัญของแรงที่แข็งแกร่งเป็นครั้งแรกที่จะอธิบายว่านิวเคลียสยึดเหนี่ยวอยู่ด้วยกันได้อย่างไร ในการปฏิสัมพันธ์แบบ Yukawa อนุภาคเสมือนตัวหนึ่ง ที่ต่อมาถูกเรียกว่า meson ได้ใกล่เกลี่ยแรงระหว่างนิวคลีออนทั้งหมด รวมทั้งโปรตอนและนิวตรอน แรงนี้อธิบายว่าทำไมนิวเคลียสทั้งหลายจะไม่สลายตัวแยกออกจากกันภายใต้อิทธิพลของแรงขับโปรตอน และมันยังให้คำอธิบายว่าทำไมแรงดูดที่แข็งแกร่งถึงมีขอบเขตที่จำกัดมากกว่าแรงผลักแม่เหล็กไฟฟ้าระหว่างโปรตอนด้วยกัน ต่อมา การค้นพบ pi meson แสดงให้เห็นว่ามันจะมีคุณสมบัติของอนุภาคของ Yukawa

ด้วยเอกสารของ Yukawa รูปแบบที่ทันสมัย​​ของอะตอมได้เสร็จสมบูรณ์แล้ว ศูนย์กลางของอะตอมจะมีลูกกลมแน่นของนิวตรอนและโปรตอน ซึ่งถูกยึดเข้าด้วยกันโดยแรงนิวเคลียสที่แข็งแกร่ง นอกเสียจากว่ามันจะมีขนาดใหญ่เกินไป นิวเคลียสที่ไม่เสถียรอาจสลายตัวไห้แอลฟา ที่พวกนิวเคลียสปล่อยนิวเคลียสของฮีเลียมที่มีพลังออกมา หรือการสลายที่ให้บีตาพวกนิวเคลียสปลดปล่อยอิเล็กตรอน (หรือโพซิตรอน) ออกมา หลังจากหนึ่งในการสูญสลายเหล่านี้ นิวเคลียสที่เป็นผลลัพธ์อาจจะถูกปล่อยให้อยู่ในสภาพที่ถูกกระตุ้น และในกรณีนี้มันจะสูญสลายไปสู่สภาพพื้นดินโดยการปลดปล่อยโฟตอนพลังงานสูง (การสลายให้แกมมา)

การศึกษาของแรงนิวเคลียสที่แข็งแกร่งและอ่อนแอ (ตัวหลังถูกอธิบายโดย Enrico Fermi ผ่านการปฏิสัมพันธ์ของ Fermi ในปี 1934) ได้นำนักฟิสิกส์ไปสู่การชนของนิวเคลียสและอิเล็กตรอนที่พลังงานที่สูงขึ้นกว่าที่เคย การวิจัยครั้งนี้กลายเป็นวิทยาศาสตร์ของฟิสิกส์ของอนุภาค ซึ่งเป็นเพชรในมงกุฎที่เป็นรุ่นมาตรฐานของฟิสิกส์ของอนุภาคซึ่งอธิบายแรงที่แข็งแกร่ง ที่อ่อนแอและแรงแม่เหล็กไฟฟ้า

ใกล้เคียง

ฟิสิกส์ ฟิสิกส์นิวเคลียร์ ฟิสิกส์อะตอม โมเลกุล และทัศนศาสตร์ ฟิสิกส์ของอนุภาค ฟิสิกส์ทฤษฎี ฟิสิกส์โอลิมปิกระดับทวีปเอเชีย ฟิสิกส์ดาราศาสตร์ ฟิสิกส์อะตอม ฟิสิกส์เชิงคณิตศาสตร์ ฟิสิกส์วิศวกรรม

แหล่งที่มา

WikiPedia: ฟิสิกส์นิวเคลียร์ http://www.myfirstbrain.com/student_view.aspx?ID=7... http://ikaen2520.wordpress.com/3-%E0%B8%9F%E0%B8%B... http://adsabs.harvard.edu/abs/1997NuPhS..57..259T http://adsabs.harvard.edu/abs/1999CQGra..16.2471S http://adsabs.harvard.edu/abs/2006ENews..37...24P //arxiv.org/abs/gr-qc/9905022 //doi.org/10.1016%2Fs0920-5632(97)00399-x //doi.org/10.1051%2Fepn:2006504 //doi.org/10.1088%2F0264-9381%2F16%2F7%2F320 http://www.europhysicsnews.org