กระแสสลับ ของ ระบบจ่ายไฟฟ้าแก่ทางรถไฟ

ระบบจ่ายกระแสไฟฟ้า AC จะเป็นแบบเหนือศีรษะได้อย่างเดียว กระแสสลับสามารถเปลี่ยนแรงดันไฟฟ้าให้ลดลงได้ภายในหัวรถจักร ใช้แรงดันไฟฟ้าที่สูงมากเพื่อให้มีกระแสน้อยลง สายส่งจึงมีขนาดเล็กลง ซึ่งหมายถึงการสูญเสียพลังงานน้อยลงไปตามทางยาวของเส้นทางรถไฟ

กระแสสลับความถี่ต่ำ

รถไฟฟ้าในสวิตเซอร์แลนด์ใช้ไฟ 15 kV 16.7 Hz AC

มอเตอร์ไฟฟ้า DC ที่มีตัวสลับทิศทางธรรมดา ยังสามารถเลี้ยงด้วย AC (มอเตอร์ทั่วไป) เพราะการย้อนกลับของกระแสในสเตเตอร์และโรเตอร์ไม่เปลี่ยนทิศทางของแรงบิด อย่างไรก็ตามการเหนี่ยวนำของขดลวดที่ทำให้ตอนเริ่มต้นของการออกแบบมอเตอร์ขนาดใหญ่เป็นไปไม่ได้ในทางปฏิบัติที่ความถี่ AC มาตรฐาน นอกจากนี้ AC ก่อให้เกิดกระแสไหลวน (eddy current) โดยเฉพาะอย่างยิ่งใน pole สนามที่ไม่เคลือบ ซึ่งก่อให้เกิดความร้อนสูงเกินไปและการสูญเสียประสิทธิภาพ ในศตวรรษที่ก่อนหน้านี้ห้าประเทศในยุโรป ได้แก่ เยอรมนี, ออสเตรีย, สวิตเซอร์แลนด์, นอร์เวย์และสวีเดนสร้างมาตรฐานที่ 15 kV 16 2/3 เฮิรตซ์ (หนึ่งในสามของความถี่ไฟปกติ) AC เฟสเดียว ในความพยายามที่จะบรรเทาปัญหาดังกล่าว เมื่อตุลาคม 16, 1995, เยอรมนี, ออสเตรียและสวิสเปลี่ยนการกำหนดที่ 16 ⅔ Hz เป็น 16.7 เฮิร์ตซ์ (แม้ว่าความถี่ที่เกิดขึ้นจริงไม่ได้เปลี่ยน, การข้ดกำหนดมีการเปลี่ยน; ในทั้งสองกรณีความเบี่ยงเบนทางความถี่ไปจากความถี่กลางอยู่ที่± 1/3 เฮิร์ตซ์ )

ในประเทศสหรัฐอเมริกา, ใช้ 25 Hz, ความถี่เก่าที่ครั้งหนึ่งพบบ่อยในอุตสาหกรรมถูกนำใช้ในระบบของแอมแทรก ที่ 11 กิโลโวลต์ในภาคตะวันออกเฉียงเหนือระหว่างวอชิงตันดีซีและนครนิวยอร์กและระหว่างแฮร์ริส, ซิลเวเนียและฟิลาเดลเฟีย 12.5 กิโลโวลต์ 25 Hz ส่วนระหว่างมหานครนิวยอร์กและนิวเฮเวน, คอนเนตทิคัทถูกดัดแปลงเป็น 60 Hz ในไตรมาสที่สามสุดท้ายของศตวรรษที่ 20

ในสหราชอาณาจักร, ลอนดอน, ไบรท์ตัน, ชายฝั่งตอนใต้ รถไฟเป็นหัวหอกในการใช้พลังงานไฟฟ้าระบบเหนือศีรษะของสายส่งชานเมืองในลอนดอน, สะพานลอนดอนถึงวิกตอเรียถูกเปิดการจราจรบน 1 ธันวาคม 1909 วิกตอเรียถึงคริสตัลพาเลซผ่าน Balham และนอร์วูดตะวันตกเปิดพฤษภาคม 1911 เพคแฮมไรอ์ถึงนอร์วูดตะวันตกเปิดในมิถุนายน 1912 การขยายเส้นทางทำไม่ได้เนื่องจากสงครามโลกครั้งที่หนึ่ง สองเส้นทางเปิดใน 1925 ภายใต้ทางรถไฟสายใต้ให้บริการ Coulsdon เหนือและสถานีรถไฟซัตตัน. การรถไฟใช้ไฟฟ้าที่ 6.7 กิโลโวลต์ 25 เฮิร์ตซ์ ได้มีการประกาศใน 1926 ว่าทุกเส้นทางจะถูกแปลงเป็น DC รางที่สามและระบบเหนือศีรษะสุดท้ายจะใช้จนถึงเดือนกันยายน 1929

ในระบบดังกล่าว มอเตอร์แรงฉุดสามารถได้รับกระแสไฟป้อนผ่านหม้อแปลงที่มีหลาย tap การเปลี่ยนแทปช่วยให้แรงดันไฟฟ้าที่มอเตอร์จะมีการเปลี่ยนแปลงโดยไม่ต้องมีตัวต้านทานไฟฟ้า เครื่องจักรอุปกรณ์เสริมจะถูกขับด้วยมอเตอร์สลับทางขนาดเล็กที่ได้รับพลังงานมาจากขดลวดแรงดันต่ำแยกต่างหากของหม้อแปลงหลัก

การใช้คลื่นความถี่ต่ำต้องใช้ไฟฟ้าที่ได้รับการดัดแปลงมาจากกระแสไฟจากการไฟฟ้าโดยมอเตอร์-เจนเนอเรเตอร์หรืออินเวอร์เตอร์แบบคงที่ที่สถานีย่อยหรือผลิตไฟฟ้าที่สถานีไฟฟ้าแยกต่างหาก

ตั้งแต่ปี 1979 มอเตอร์เหนี่ยวนำสามเฟสได้เกือบจะกลายเป็นที่ใช้กันในระดับสากล มันถูกป้อนกระแสโดย static four-quadrant converter ซึ่งจ่ายแรงดันไฟฟ้าคงที่ให้กับ pulse-width modulator inverter ที่จ่ายไฟฟ้าให้มอเตอร์สามเฟสความถี่แปรได้

ระบบกระแสสลับหลายเฟส

รถไฟกระแสไฟฟ้า AC 3 เฟสถูกใช้ในอิตาลี สวิตเซอร์แลนด์และสหรัฐอเมริกาในต้นศตวรรษที่ 20 ระบบในตอนต้นใช้

ความถี่ต่ำ (16⅔ Hz) และแรงดันไฟฟ้าที่ค่อนข้างต่ำ (3,000 หรือ 3,600 โวลต์) ระบบจะสร้างพลังงานจากการเบรก ป้อนกลับไปยังระบบ จึงมีความเหมาะสมอย่างยิ่งสำหรับรถไฟที่ใช้ในเขตภูเขา (หัวรถจักรอีกขบวนสามารถใช้พลังนี้ได้) ระบบมีข้อเสียของการที่ต้องใช้ตัวนำเหนือศีรษะสอง (หรือสาม) ที่แยกเป็นสัดส่วนบวก return path ผ่านทางราง หัวรถจักรไฟฟ้าทำงานที่ความเร็วคงที่ ที่หนึ่ง, สองหรือสี่สปีด

ระบบยังถูกนำมาใช้บนภูเขาสี่ลูก รถไฟใช้ 725-3,000 V at 50 หรือ 60 Hz: (Corcovado Rack ในริโอเดอจาเนโร, บราซิล, Jungfraubahn และ Gornergratbahn ในประเทศสวิสเซอร์แลนด์และ Petit รถไฟ de la Rhune ในประเทศฝรั่งเศส)

มาตรฐานความถี่กระแสสลับ

เฉพาะในปี 1950 หลังการพัฒนาในประเทศฝรั่งเศส (20 kV; ต่อมา 25 กิโลโวลต์) และรถไฟอดีตประเทศสหภาพโซเวียต (25 kV) ได้มาตรฐานความถี่เฟสเดียวกระแสสลับกลายเป็นที่แพร่หลาย ความถี่ที่ใช้คือ 50 Hz

สหรัฐปกติจะใช้ 12.5 หรือ 25 kV 25 Hz หรือ 60 Hz. กระแสไฟ AC เป็นที่นิยมใช้สำหรับรถไฟความเร็วสูงและรถไฟระยะทางไกลสายทางใหม่ๆ

ทุกวันนี้ หัวรถจักรบางหัวในระบบนี้ใช้หม้อแปลงไฟฟ้​​าและวงจรเรียงกระแสเพื่อจ่ายไฟฟ้ากระแสตรงแรงดันต่ำในรูปของพั้ลส์ให้กับมอเตอร์ ความเร็วจะถูกควบคุมโดยการแท๊ปในหม้อแปลง หัวจักรที่ซับซ้อนมากขึ้นใช้ทรานซิสเตอร์หรือ IGBT เพื่อสร้างกระแสสลับที่ถูกตัดยอดคลื่นหรือแม้แต่ปรับความถี่ได้ เพื่อส่งไปยัง AC มอเตอร์เหนี่ยวนำที่ใช้ในการฉุดลากขบวนรถ

ระบบนี้ค่อนข้างประหยัด แต่ก็มีข้อบกพร่องของ: เฟสของระบบไฟฟ้าภายนอกจะถูกโหลดอย่างไม่เท่ากันและเกิดการรบกวนทางแม่เหล็กไฟฟ้าที่สร้างอย่างมีนัยสำคัญเช่นเดียวกับเสียงรบกวนอย่างมีนัยสำคัญ

รายชื่อประเทศที่ใช้ 25 กิโลโวลต์ AC 50 Hz ระบบเฟสเดียวสามารถพบได้ในรายการของระบบกระแสสำหรับการลากรถไฟไฟฟ้า

ภาพแสดง pantograph แบบ diamond สำหรับรับกระแสมาให้หัวรถจักรผ่านทางหน้าสัมผ้สที่อยู่บนสุด

เพื่อป้องกันความเสี่ยงของ out of phase ของไฟฟ้าจากหลายแหล่ง หลายช่วงของสายส่งจากสถานีที่ต่างกันจะต้องถูกแยกออกอย่างเคร่งครัด สิ่งนี่ทำได้โดย Neutral Section (หรือ Phase Breaks), มักจะถูกจัดให้ที่สถานีจ่ายและอยู่ระหว่างสถานีจ่ายนั้น แม้ว่าปกติมีเพียงครึ่งหนึ่งที่ทำงานอยู่ในเวลาใดเวลาหนึ่ง ที่เหลือถูกจัดให้เพื่อให้สถานีป้อนปิดตัวลงและพลังงานจะถูกจ่ายมาจากสถานีป้อนที่อยู่ติดกัน Neutral Section มักจะประกอบด้วยส่วนสายดินของลวดซึ่งถูกแยกออกจากสาย live โดยวัสดุฉนวน, ลูกถ้วยเซรามิกที่ถูกออกแบบเพื่อให้อุปกรณ์รับกระแสไฟฟ้าบนหัวรถจักร (pantograph) สามารถจะเคลื่อนออกมาจากส่วนหนึ่งไปที่ส่วนอื่น ๆได้อย่างราบรื่น ส่วนสายดินป้องกันการเกิดอาร์คจากเซ็กชั่น live หนึ่งไปยังอีกเซ็กชั่นหนึ่ง เพราะความแตกต่างของแรงดันไฟฟ้าที่อาจจะสูงกว่าแรงดันไฟฟ้าระบบปกติมาก ถ้าเซ็กชั่น live มีเฟสต่างกันและและเบรกเกอร์วงจรป้องกันอาจจะไม่สามารถหยุดยั้งกระแสได้อย่างปลอดภัย เพื่อป้องกันความเสี่ยงจากการอาร์คระหว่างสาย live กับดิน, เมื่อขบวนรถวิ่งผ่านส่วน neutral, รถไฟต้องไหลไปเองและวงจรเบรกเกอร์จะต้องเปิด ในหลาย ๆ กรณีงานนี้จะทำโดยพนักงานขับรถ. เพื่อช่วยพวกเขา, กระดานเตือนจะถูกจัดให้ก่อนที่จะถึงส่วน neutral กระดานเตือนต้วต่อไปจะแจ้งเตือนพนักงานขับรถให้ปิดวงจรเบรกเกอร์อีกครั้งหนึ่ง, พนักงานขับรถจะต้องไม่ทำเช่นนี้จนกว่า pantograph ตัวหลังจะผ่านกระดานไปแล้ว ในสหราชอาณาจักรอุปกรณ์ที่เรียกกันว่า Automatic Power Control (APC) จะเปิดและปิดวงจรไฟฟ้านี้โดยอัตโนมัติ ซึ่งทำได้โดยการใช้ชุดของแม่เหล็กถาวรควบคู่ไปกับการสลับเส้นทางด้วยเครื่องตรวจจับบนรถไฟ การดำเนินการเฉพาะที่จำเป็นโดยคนขับก็คือการปิดพลังงานไฟฟ้าและปล่อยให้ขบวนไหลเลื่อนไปเอง อย่างไรก็ตามกระดานเตือนยังคงมีในจุดที่และในส่วนที่กำลังเข้าไปยังส่วน neutral

ในเส้นทางรถไฟความเร็วสูงฝรั่งเศส, ในรางเชื่อมอุโมงค์ข้ามช่องแคบความเร็วสูงที่ 1 ของสหราชอาณาจักรและในอุโมงค์ข้ามช่องแคบ neutral section จะถูกควบคุมโดยอัตโนมัติ

ในสาย ชิงกันเซ็ง ของญี่ปุ่น section ที่ switch ด้วยกราวด์ ถูกติดตั้งแทน neutral section section จะตรวจจับขบวนรถไฟที่กำลังวิ่งอยู่ภายใน section นี้ และทำการสลับแหล่งพลังงานโดยอัตโนมัติภายใน 0.3 วินาที, ซึ่งไม่จำเป็นต้องปิดไฟอีกเลย

ใกล้เคียง

ระบบจ่ายไฟฟ้าแก่ทางรถไฟ ระบบจำแนกประเภทภาพยนตร์ ระบบจำแนกประเภทยาตามการรักษาทางกายวิภาคศาสตร์ ระบบจัดการฐานข้อมูล ระบบจัดการเนื้อหาเว็บ ระบบจ่ายไฟฟ้าเหนือหัว ระบบจัดการเนื้อหา ระบบจราจรซ้ายมือและขวามือ ระบบจู้อิน ระบบจัดเส้นทางหัวหอม