ข้อเสีย ของ ระบบสายส่งกระแสตรงความดันสูง

ข้อเสียของ HVDC อยู่ที่การแปลง AC/DC, การ switch, การควบคุม, ความพร้อมใช้งานและการบำรุงรักษา

HVDC มีความน่าเชื่อถือน้อยกว่า และมีความพร้อมใช้งานต่ำก​​ว่าระบบกระแสสลับ (AC) ส่วนใหญ่เนื่องจากเป็นเพราะอุปกรณ์การแปลงที่มีอยู่จำกัด ในระบบ pole เดียวมีความพร้อมประมาณ 98.5% ประมาณหนึ่งในสามของการหยุดทำงานที่ไม่ได้มีหมายกำหนดการณ์ล่วงหน้า เกิดขึ้นเนื่องจากความผิดพลาด ความผิดพลาดที่พอรับได้ของระบบ bipole ให้ประสิทธิภาพที่สูงเพียง 50% ของความสามารถที่เชื่อมโยง แต่ความพร้อมของการผลิตเต็มกำลังอยู่ที่ประมาณ 97% ถึง 98%.

ตัวแปลง AC/DC มีราคาแพงและมีข้อจำกัดที่ขนาดพิกัดของโหลดที่รับได้ ซึ่งที่ระยะทางการส่งสั้นๆ ความสูญเสียในสถานีแปลงอาจจะมีขนาดมากกว่าในสายส่ง AC ถึงแม้ต้นทุนจากราคาของตัวแปลงอาจจะถูกชดเชยด้วยการลดลงของค่าใช้จ่ายในการก่อสร้างสายและการสูญเสียในสายที่ต่ำกว่าของ HVDC แต่อาจจะไม่คุ้มพอก็ได้

ระบบ HVDC ต้องใช้ชิ้นส่วนอะไหล่จำนวนมาก มักจะเฉพาะเจาะจงสำหรับระบบใดระบบหนึ่ง เนื่องจากระบบ HVDC ยังมีความเป็นมาตรฐานน้อยกว่าของระบบ AC และเทคโนโลยีก็เปลี่ยนเร็วมาก ต้องกักตุนอะไหล่ไว้มากหน่อย มิฉะนั้นอาจล้าสมัย หาซื้อใหม่ไม่ได้

ในทางตรงกันข้ามกับระบบ AC ที่มีการควบคุมระบบหลายสถานีว่ามีความซับซ้อนอย่างดี (โดยเฉพาะอย่างยิ่งกับตัวเปลี่ยนให้เป็นกระแสตรง) เมื่อทำระบบ DC เทียบเท่ากับการขยายโครงการที่มีอยู่ให้ไปใช้กับระบบหลายสถานี พบว่าการควบคุมการไหลของกระแสไฟฟ้าในระบบ DC หลายสถานีต้องมีการสื่อสารที่ดีระหว่างสถานีทั้งหมด. กระแสไฟฟ้าจะต้องได้รับการควบคุมอย่างอย่างดี โดยระบบการควบคุมการแปลงแทนที่จะควบคุมค่าความต้านทานและคุณสมบัติมุมเฟสของสายส่ง ระบบหลายเทอร์มินอลเป็นของหายาก ณ ปี 2012 มีเพียงสองระบบเท่านั้นที่ให้บริการ ได้แก่ ไฮโดรควิเบค - การส่งในนิวอิงแลนด์ระหว่างเรดิสัน, แซนดี้พอนด์ และ Nicolet และการต่อกันระหว่างซาร์ดิเนียกับแผ่นดินใหญ่อิตาลีซึ่งได้รับการแก้ไขในปี 1989 เพื่อให้สามารถส่งพลังงานไปยังเกาะคอร์ซิกาได้ด้วย

Inverter รูปแบบหนึ่ง ทำงานด้วย electronic switch

เบรกเกอร์วงจร HVDC สร้างยากเพราะกลไกบางอย่างต้องถูกใส่เข้าไปในเบรกเกอร์ เพื่อที่จะบังคับให้กระแสเป็นศูนย์ มิฉะนั้น การ arc ระหว่างหน้าสัมผ้สของเบรกเกอร์ และการสึกหรอของหน้าสัมผัส ทำให้การสวิทชิ่งไม่น่าเชื่อถือ ในเดือนพฤศจิกายน 2012, ABB ประกาศการพัฒนาของเบรกเกอร์ HVDC ตัวแรกของโลก

เบรกเกอร์ของ ABB มีชิ้นส่วนที่ใช้ในการสวิทช์ 4 ชิ้น เป็นกลไก 2 ชิ้น (ความเร็วสูงหนึ่งชิ้นและความเร็วต่ำหนึ่งชิ้น) และเป็นเซมิคอนดักเตอร์ 2 ชิ้น (แรงดันสูงหนึ่งชิ้นและแรงดันต่ำหนึ่งชิ้น) โดยปกติไฟฟ้าจะไหลจากสวิตช์กลไกความเร็วต่ำไปที่สวิตช์กลไกความเร็วสูง, และสวิทช์เซมิคอนดักเตอร์แรงดันต่ำ สวิทช์สองตัวสุดท้ายจะขนานกับสวิทช์เซมิคอนดักเตอร์แรงดันสูง

ในขั้นต้น หน้าสัมผัสของสวิทช์ทั้งหมดจะถูกปิดวงจร (connect หรือ ON) เนื่องจากสวิทช์เซมิคอนดักเตอร์แรงดันสูงมีค่าความต้านทานสูงกว่าสวิตช์กลไกความเร็วสูงกับสวิทช์เซมิคอนดักเตอร์แรงดันต่ำกว่ามากๆ กระแสไฟฟ้าที่ไหลผ่านสวิทช์เซมิคอนดักเตอร์แรงดันสูงจึงอยู่ในระดับต่ำ ในการ disconnect ขั้นแรกเซมิคอนดักเตอร์สวิทช์แรงดันต่ำเปิดวงจร(Disconnect หรือ off) ทำให้กระแสเปลี่ยนทางไปไหลผ่านสวิทช์เซมิคอนดักเตอร์แรงดันสูง เนื่องจากสวิทช์เซมิคอนดักเตอร์แรงดันสูงมีความต้านทานสูงมาก มันจึงเริ่มร้อนขึ้นอย่างรวดเร็ว จากนั้นสวิตช์กลไกความเร็วสูงก็จะเปิดวงจร ซึ่งแตกต่างจากสวิทช์เซมิคอนดักเตอร์แรงดันต่ำซึ่งมีเพียงความสามารถในการทนทานต่อแรงดันไฟฟ้าทีตกคร่อมจากสวิทช์สารกึ่งตัวนำไฟฟ้าแรงสูงที่ปิดวงจร นี้เป็นความสามารถในการทนทานต่อแรงดันไฟฟ้าเต็มรูปแบบ เนื่องจากไม่มีกระแสไหลผ่านสวิตช์เมื่อมันเปิด มันจึงไม่ได้รับความเสียหายจากการ arc จากนั้นสวิทช์สารกึ่งตัวนำแรงสูงจะเปิดวงจรซึ่งเป็นการตัดไฟของจริง ถึงอย่างไรก็ตามมันยังไม่เป็นการตัดไฟ 100% สวิทช์กลไกความเร็วต่ำจะ disconnect กระแสที่ค้างอยู่เป็นตัวสุดท้าย

ใกล้เคียง

ระบบสุริยะ ระบบสายส่งกระแสตรงความดันสูง ระบบสกาดา ระบบส่งข้อความทันที ระบบสนับสนุนเทคโนโลยีสารสนเทศ ระบบสารสนเทศ ระบบสืบพันธุ์ของมนุษย์ ระบบสัดส่วนแบบบัญชีรายชื่อ ระบบสารสนเทศภูมิศาสตร์ ระบบสภาเดียว