การส่งกำลัง ของ วิศวกรรมกำลังไฟฟ้า

กระแสไฟฟ้าจะถูกขนส่งไปยังสถานที่โหลดจากโรงไฟฟ้าผ่านทางระบบย่อยการส่งกำลัง ดังนั้นเราอาจจะคิดถึงระบบการส่งกำลังว่าเป็นสื่อกลางในการขนส่งพลังงานไฟฟ้า ระบบการส่งกำลังอาจถูกแบ่งย่อยออกเป็นระบบการส่งกำลังเป็นกลุ่ม (อังกฤษ: bulk transmission system) และระบบการส่งกำลังย่อย (อังกฤษ: sub-transmission system) ฟังก์ชันของการส่งกำลังแบบกลุ่มจะมีการเชื่อมต่อระหว่างเครื่องกำเนิดไฟฟ้าเข้าด้วยกัน การเชื่อมต่อระหว่างแต่ละพื้นที่ต่างๆของเครือข่ายเข้าด้วยกัน และการถ่ายโอนพลังงานไฟฟ้าจากเครื่องกำเนิดไฟฟ้าไปยังศูนย์โหลดที่สำคัญ ส่วนนี้ของระบบถูกเรียกว่า "กลุ่ม" เพราะมันจัดส่งพลังงานให้กับจุดที่จะเรียกว่ากลุ่มโหลดเท่านั้นเช่นระบบการกระจายไฟฟ้าของเมือง มหานครหรือโรงงานอุตสาหกรรมขนาดใหญ่ ฟังก์ชันของระบบการส่งกำลังย่อยก็คือการเชื่อมต่อระบบไฟฟ้าแบบกลุ่มเข้ากับระบบการกระจาย

เครือข่ายการส่งกำลังอาจถูกสร้างขึ้นได้ทั้งใต้ดินและบนอากาศ สายเคเบิลใต้ดินถูกนำมาใช้ส่วนใหญ่ในพื้นที่เขตเมืองในบริเวณที่การได้มาซึ่งสิทธิ์ของทาง (อังกฤษ: right of ways) บนอากาศมีค่าใช้จ่ายสูงหรือเป็นไปไม่ได้ สายเคเบิลใต้ดินยังถูกใช้สำหรับการส่งกำลังใต้แม่น้ำ ทะเลสาบและอ่าว อย่างไรก็ตามการส่งกำลังบนอากาศจะถูกนำมาใช้เพราะสำหรับระดับแรงดันไฟฟ้าที่เท่ากัน สายเคเบิลอากาศจะมีราคาถูกกว่าสายเคเบิลใต้ดินมาก

ระบบส่งกำลังเป็นระบบบูรณาการอย่างมาก มันถูกเรียกว่าเป็นอุปกรณ์และสายส่งกำลังของสถานีย่อย อุปกรณ์สถานีย่อยประกอบด้วยหม้อแปลง รีเลย์ และตัวตัดวงจร (อังกฤษ: circuit breaker) หม้อแปลงเป็นอุปกรณ์สำคัญที่คงที่ มันทำหน้าที่ถ่ายโอนพลังงานไฟฟ้าจากวงจรหนึ่งไปยังอีกวงจรหนึ่งในระบบการส่งกำลังย่อย หม้อแปลงถูกใช้เพื่อเพิ่มแรงดันไฟฟ้าในสายส่งกำลังเพื่อลดการสูญเสียพลังงานที่จะกระจายหมดเปลืองไปตามเส้นทาง[21] รีเลย์ทำหน้าที่เป็นตัวตรวจจับระดับแรงดัน พวกมันจะทำหน้าที่เป็นสวิตช์เมื่อแรงดันไฟฟ้า (หรือกระแส) ด้านขาเข้ามีค่าเกินกว่าค่าที่ปรับตั้งไว้ ตัวตัดวงจรทำหน้าที่เป็นสวิตช์ไฟฟ้าที่ทำงานโดยอัตโนมัติ มันถูกออกแบบมาเพื่อปกป้องวงจรไฟฟ้าจากความเสียหายที่เกิดจากโหลดเกินหรือลัดวงจร การเปลี่ยนแปลงในสถานะของส่วนประกอบใดส่วนประกอบหนึ่งมีนัยสำคัญที่สามารถส่งผลกระทบต่อการดำเนินงานของระบบทั้งหมด ถ้าปราศจากการป้องกันจุดสัมผ้สที่ทำการตัดต่อวงจรไฟฟ้าที่เพียงพอ การเกิดประกายไฟฟ้าที่ไม่พึงประสงค์สามารถทำให้เกิดการลดสภาพอย่างมีนัยสำคัญของจุดตัดต่อวงจรเหล่านั้น ซึ่งสามารถทำให้เกิดความเสียหายร้ายแรง[22] มีสามสาเหตุที่เป็นไปได้สำหรับข้อจำกัดการไหลของพลังงานในสายส่งกำลัง ได้แก่ความร้อนเกินพิกัด, ความไม่เสถียรของแรงดันไฟฟ้าและความไม่เสถียรของมุมโรเตอร์ ความร้อนเกินพิกัดจะเกิดจากการไหลของกระแสที่มากเกินไปในวงจรหนึ่งทำให้เกิดความร้อนสูงเกิน ความไม่เสถียรของแรงดันไฟฟ้าจะเกิดขึ้นเมื่อพลังงานที่จำเป็นในการรักษาระดับแรงดันไฟฟ้าให้อยู่ที่หรือสูงกว่าระดับที่ยอมรับได้มีค่าสูงเกินกว่ากำลังไฟฟ้าที่มีอยู่ ความไม่เสถียรของมุมโรเตอร์เป็นปัญหาแบบไดนามิกที่อาจเกิดขึ้นต่อจากความผิดพลาดต่าง ๆ ในระบบส่งกำลังเช่นไฟฟ้าลัดวงจร นอกจากนี้ยังอาจเกิดขึ้นหลายสิบวินาทีหลังจากความผิดพลาดอันเนื่องมาจากการตอบสนองที่กวัดแกว่งแบบหน่วงหรือไม่หน่วงของการเคลื่อนไหวโรเตอร์ ตราบใดที่เกณฑ์ทางพื้นที่เท่ากันได้ถูกรักษาไว้ ระบบที่เชื่อมต่อเข้าด้วยกันจะยังคงมีเสถียรภาพ ถ้าเกณฑ์ทางพื้นที่เท่ากันถูกละเมิด มันจึงกลายเป็นสิ่งจำเป็นที่จะต้องแยกองค์ประกอบที่ไม่เสถียรออกจากส่วนที่เหลือของระบบ

ใกล้เคียง

วิศวกรรมศาสตร์ วิศวกรรมเครื่องกล วิศวกรรมไฟฟ้า วิศวกรรมโครงสร้าง วิศวกรรมคอมพิวเตอร์ วิศวกรรมแมคคาทรอนิกส์และหุ่นยนต์ วิศวกรรมการบินและอวกาศ วิศวกรรมกำลังไฟฟ้า วิศวกรรมสิ่งแวดล้อม วิศวกรรมอิเล็กทรอนิกส์

แหล่งที่มา

WikiPedia: วิศวกรรมกำลังไฟฟ้า http://library.abb.com/GLOBAL/SCOT/scot221.nsf/Ver... http://www.abb.com/product/us/9AAC710047.aspx http://www.allaboutcircuits.com/ http://www.arcsuppressiontechnologies.com/arc-supp... http://www.engineering-timelines.com/scripts/engin... http://www.more-powerful-solutions.com/media/Scree... http://www.nypost.com/seven/11302007/news/cextra/e... http://www.pearlstreetinc.com/NYISO_bulk_elect_beg... http://www.sayedsaad.com/Transformer/SF6_Transform... http://tdworld.com/mag/power_electricity_ages/