อุบัติเหตุ ของ อุบัติเหตุนิวเคลียร์เกาะทรีไมล์

วาล์วติด

ภาพตัดขวางของวาวล์ระบายที่ทำงานด้วยนำร่อง (PORV) ถูกใช้สำหรับการระบายฉุกเฉินเมื่อเกิดความดันสูงเกิน (เช่น ถังถูกความร้อนมากเกินไป ทำให้ของเหลวภายในเกิดการขยายตัว เพิ่มความดันเข้าสู่ระดับที่เป็นอันตราย) วาวล์แบบนี้ใช้ความดันในการปิดผนึก ในขณะที่วาวล์ระบายความดันทั่วไปใช้สปริงเพื่อยึดจานหรือลูกสูบไว้กับฐานแผนภาพอย่างง่ายของโรงไฟฟ้า TMI-2[14]

หลายชั่วโมงในเวลากลางคืนก่อ​​นเหตุการณ์จะเกิดขึ้น เครื่องปฏิกรณ์ TMI-2 กำลังทำงานที่ 97% ของกำลังเต็ม ในขณะที่สหายของมัน เครื่องปฏิกรณ์ TMI-1 ถูกปิดเพื่อเติมเชื้อเพลิง[15] ห่วงโซ่หลักของเหตุการณ์ที่นำไปสู่​​การหลอมละลายล่มสลายของแกนบางส่วนเริ่มขี้นเมื่อเวลา 04:37 EST ของวันที่ 28 มีนาคม 1979 ในวงน้ำรอบที่สองของ TMI-2 ซึ่งเป็นหนึ่งในสามวงรอบ (อังกฤษ: loop) ของน้ำ/ไอน้ำในเครื่องปฏิกรณ์น้ำแรงดันสูง (PWR)

สาเหตุแต่แรกของอุบัติเหตุเกิดขึ้นเมื่อสิบเอ็ดชั่วโมงก่อนหน้านี้ ในระหว่างความพยายามของผู้ควบคุมเครื่องในการแก้ไขปัญหาการอุดตันของตัวขัดคอนเดนเสท (อังกฤษ: condensate polisher) (อุปกรณ์สำหรับกรองน้ำที่ถูกควบแน่นจากไอน้ำ) ตัวหนึ่งในแปดตัวที่มีอยู่ ซึ่งถูกใช้เป็นตัวกรองที่มีความซับซ้อนเพื่อทำความสะอาดวงรอบน้ำที่สอง (อังกฤษ: secondary water loop) ตัวกรองเหล่านี้ได้รับการออกแบบมาเพื่อป้องกันการสะสมของแร่ธาตุและสิ่งสกปรกในน้ำในเครื่องกำเนิดไอน้ำซึ่งไปเพิ่มอัตราการกัดกร่อนในด้านที่สอง

การอุดตันเป็นเรื่องธรรมดากับตัวกรองเรซินเหล่านี้และมักจะได้รับการแก้ไขได้อย่างง่ายดาย แต่ในกรณีนี้วิธีการปกติของการบังคับให้เรซินที่ติดอยู่ออกมาด้วยอากาศอัดไม่ประสบความสำเร็จ ผู้ควบคุมเครื่องตัดสินใจที่จะระเบิดอากาศอัดเข้าไปในน้ำและปล่อยให้แรงของน้ำล้างเรซินออก เมื่อพวกเขาบังคับให้เรซินออก จำนวนเล็ก ๆ ของน้ำได้บังคับให้มันไหลผ่านเช็ควาล์วที่ติดขัดและเปิดค้างอยู่ และไหลผ่านเข้าไปในสายอากาศเครื่องมือ ซึ่งในที่สุดจะทำให้เครื่องสูบน้ำป้อน (อังกฤษ: feedwater pump) ปั๊มเพิ่มแรงดันคอนเดนเสท และปั๊มคอนเดนเสทที่จะหยุดการทำงานเมื่อประมาณ 04:00 ซึ่งทำให้ไม่สามารถควบคุมความเร็วของกังหันได้ที่เรียกว่า turbine trip[16]

เมื่อเครื่องกำเนิดไอน้ำไม่ได้รับน้ำป้อนอีกต่อไป ความร้อนและความดันก็เพิ่มขึ้นในระบบน้ำหล่อเย็นของเตาปฏิกรณ์ ทำให้เครื่องปฏิกรณ์ทำการปิดฉุกเฉิน (SCRAM) ภายในแปดวินาที แท่งควบคุมถูกสอดเข้าไปในแกนกลางเพื่อหยุดปฏิกิริยาลูกโซ่นิวเคลียร์ เครื่องปฏิกรณ์ยังคงสร้างความร้อนจากการสลายกัมมันตรังสี (อังกฤษ: decay heat) ต่อไป และเนื่องจากไอน้ำไม่ถูกนำมาใช้โดยกังหันอีกแล้ว ความร้อนก็ไม่ได้ถูกกำจัดออกจากวงรอบน้ำหลักของเครื่องปฏิกรณ์[17]

เมื่อใดก็ตามที่ปั๊มน้ำป้อนที่สองหยุดทำงาน ปั๊มเสริมสามตัวจะเริ่มทำงานโดยอัตโนมัติ แต่เนื่องจากวาล์วถูกปิดเพื่อซ่อมบำรุงประจำ ระบบก็ไม่สามารถที่จะสูบน้ำใด ๆ ได้ การปิดของวาล์วเหล่านี้เป็นการละเมิดกฏที่สำคัญของคณะกรรมการกำกับกิจการนิวเคลียร์ (NRC) ตามกฏดังกล่าว เครื่องปฏิกรณ์จะต้องปิดตัวลงทันทีหากทุกปั๊มฟีดเสริมถูกปิดเพื่อซ่อมบำรุง ซึ่งต่อมาเหตุการณ์นี้ถูกแยกออกมาโดยเจ้าหน้าที่ NRC ว่าเป็นความล้มเหลวที่สำคัญ[18]

การสูญเสียในการกำจัดความร้อนจากวงรอบหลักและความล้มเหลวของการเปิดใช้งานระบบเสริมทำให้ความดันวงรอบหลักสูงขึ้น เป็นการสั่งให้วาล์วระบายที่ทำงานโดยการนำร่องที่ด้านบนของถังควบคุมแรงดัน (อังกฤษ: pressurizer) ให้เปิดโดยอัตโนมัติ วาล์วระบายควรจะปิดเมื่อแรงดันส่วนเกินถูกปล่อยออก และกระแสไฟฟ้าที่จ่ายให้กับขดลวดแม่เหล็กไฟฟ้าของตัวนำร่องจะถูกตัดออกโดยอัตโนมัติ แต่วาล์วระบายเกิดการติดขัดและเปิดค้างเพราะความผิดทางกลไก วาล์วที่เปิดจึงยอมให้น้ำหล่อเย็นหลุดลอดออกจากระบบหลัก และเป็นสาเหตุทางกลหลัก (อังกฤษ: principal mechanical cause) ของการหลอมละลายบางส่วนที่ตามมา[19]

ปัจจัยมนุษย์: ความสับสนในสถานะของวาล์ว

ปัจจัยมนุษย์ที่สำคัญและปัญหาทาง'วิศวกรรมส่วนติดต่อผู้ใช้' (อังกฤษ: user interface engineering) ถูกเปิดเผยในการสอบสวนของส่วนติดต่อผู้ใช้ของระบบการควบคุมการทำงานเครื่องปฏิกรณ์ฯ แม้ว่าวาล์วจะกำลังติดขัดและเปิดค้างอยู่ ไฟบนแผงควบคุมก็ยังแสดงให้เห็นอย่างเห็นได้ชัดว่าวาล์วอยู่ในสถานะ ปิด ในความเป็นจริงไฟไม่ได้ระบุสถานะของวาล์ว มันเพียงแค่บอกสถานะของขดลวดแม่เหล็กไฟฟ้าว่าที่มีกระแสไฟฟ้ามาขับเคลื่อนมันหรือไม่เท่านั้น จึงเป็นการให้หลักฐานที่ผิดพลาดของวาล์วว่ามันปิดอยู่[20] เป็นผลให้ผู้ควบคุมเครื่องวินิจฉัยปัญหาไม่ถูกต้องเป็นเวลาหลายชั่วโมง[21]

การออกแบบของไฟแสดงสถานะของวาล์วระบายที่ทำงานด้วยการนำร่องเป็นข้อบกพร่องขั้นพื้นฐาน หลอดไฟมีการเชื่อมต่อเพียงแค่ขนานกับขดลวดแม่เหล็กไฟฟ้าของวาล์วเท่านั้น นั่นหมายความว่าวาล์วระบายถูกปิดอยู่เมื่อไฟไม่ติด โดยไม่ได้มีการตรวจสอบสถานะที่แท้จริงของวาล์ว เมื่อทุกอย่างมีการทำงานอย่างถูกต้อง ไฟบอกสถานะจะเป็นความจริงและผู้ควบคุมเครื่องมีความเคยชินที่จะพึ่งพามันได้ แต่เมื่อมีสิ่งผิดพลาดเกิดขึ้นและวาล์วระบายหลักติดขัดและเปิดค้างอยู่ การที่ไฟไม่ติดทำให้ผู้ควบคุมเครื่องเข้าใจผิดโดยคิดว่าวาล์วถูกปิดอยู่ เรื่องนี้ทำให้ผู้ควบคุมเครื่องเกิดความสับสนมาก เพราะความดันและอุณหภูมิอีกทั้งระดับน้ำหล่อเย็นในวงจรหลัก เท่าที่พวกเขาจะสังเกตเห็นได้ผ่านทางเครื่องมือของพวกเขา ไม่ได้มีพฤติกรรมอย่างที่พวกมันควรจะมีถ้าวาล์วระบายถูกปิด ความสับสนนี้มีส่วนทำให้อุบัติเหตุมีความรุนแรงขึ้นเพราะผู้ควบคุมเครื่องไม่สามารถออกจากวงจรของสมมติฐานที่ขัดแย้งกับสิ่งที่เครื่องมือของพวกเขาได้บอก พวกเขาไม่อาจก้าวข้ามจนกระทั่งกะใหม่เดินเข้ามา กลุ่มใหม่นี้ไม่ได้มีแนวคิดเหมือนกับผู้ควบคุมเครื่องกะก่อนหน้านี้ ที่มีการวินิจฉัยปัญหาได้อย่างถูกต้อง ในตอนนั้นความเสียหายใหญ่ก็ได้เกิดขึ้นแล้ว

ผู้ควบคุมเครื่องไม่ได้รับการฝึกอบรมที่จะเข้าใจธรรมชาติที่คลุมเครือของไฟบอกสถานะของวาล์วระบายที่ทำงานด้วยการนำร่องและการมองหาทางเลือกเพื่อยืนยันว่าวาล์วระบายหลักถูกปิดหรือไม่ มีไฟบอกสถานะของอุณหภูมิที่ส่วนปลายของวาล์วระบายที่ทำงานด้วยการนำร่องในท่อหางระหว่างวาล์วระบายและตัวสร้างความดัน (อังกฤษ: pressurizer) ที่อาจจะได้บอกพวกเขาแล้วว่าวาล์วยังติดขัดและเปิดอยู่ โดยแสดงให้เห็นว่าอุณหภูมิในท่อหางยังคงสูงกว่าที่มันควรจะเป็นถ้าวาล์วระบายที่ทำงานด้วยการนำร่องถูกปิด อย่างไรก็ตามไฟบอกสถานะของอุณหภูมินี้ไม่ได้เป็นส่วนหนึ่งของชุด "เกรดที่ปลอดภัย" ที่ออกแบบมาเพื่อนำมาใช้หลังจากเหตุการณ์ที่เกิดขึ้น และผู้ควบคุมเครื่องไม่ได้รับการฝึกอบรมการใช้งาน ที่ติดตั้งของมันก็อยู่ด้านหลังของโต๊ะ ซึ่งหมายความว่ามันต้องการให้อยู่นอกสายตาของผู้ควบคุมเครื่อง[ต้องการอ้างอิง]

ผลที่ตามมาของวาล์วติด

ในขณะที่ความดันในระบบหลักยังคงลดลงต่อเนื่อง น้ำหล่อเย็นในเตาปฏิกรณ์ก็ยังคงไหลอยู่ แต่มันกำลังเดือดอยู่ภายในแกนกลาง ตอนแรกฟองอากาศขนาดเล็กของไอน้ำก่อตัวขึ้นและยุบตัวลงทันที เรียกว่าการเดือดแบบนิวเคลียร์ (อังกฤษ: nucleate boiling) เมื่อความดันของระบบลดลงต่อไป กระเป๋าไอน้ำเริ่มก่อตัวในน้ำหล่อเย็นเตาปฏิกรณ์ 'การออกจากการเดือดแบบนิวเคลียร์' (DNB) ไปเป็นรูปแบบของ "การเดือดของฟิล์ม" (อังกฤษ: film boiling) นี้ทำให้เกิด'การโมฆะของไอน้ำ' (อังกฤษ: steam voids) ในช่องน้ำหล่อเย็น ที่ปิดกั้นการไหลของน้ำหล่อเย็นและเพิ่มอุณหภูมิของเปลือกหุ้มเชื้อเพลิงอย่างมหาศาล ระดับน้ำโดยรวมภายในตัว pressurizer กำลังสูงขึ้น แม้จะมีการสูญเสียของน้ำหล่อเย็นที่ไหลผ่านวาล์วระบายนำร่องที่เปิดค้างอยู่ เนื่องจากปริมาณของโมฆะไอน้ำเหล่านี้เพิ่มมากขึ้นอย่างรวดเร็วมากกว่าน้ำหล่อเย็นที่สูญเสียไป เพราะขาดเครื่องมือที่ใช้เฉพาะการวัดระดับของน้ำในแกนกลาง ผู้ควบคุมเครื่องตัดสินระดับของน้ำในแกนกลางด้วยระดับในตัว pressurizer แต่เพียงอย่างเดียว พอเห็นว่าระดับมันสูง พวกเขาจึงคิดว่าแกนกลางถูกปกคลุมด้วยน้ำหล่อเย็นอย่างถูกต้องแล้ว ไม่ได้ระแวงเลยว่าเป็นเพราะไอน้ำก่อตัวขึ้นในอ่างเครื่องปฏิกรณ์ ไฟบอกสถานะทำให้เข้าใจผิด[22] การบอกสถานะว่าน้ำมีระดับสูงมีส่วนทำให้เกิดความสับสน เนื่องจากผู้ควบคุมเครื่องมีความกังวลเกี่ยวกับวงรอบน้ำหลัก "จะกลายเป็นของแข็ง" (คือไม่มีกระเป๋าไอน้ำเป็นบัฟเฟอร์อยู่ในตัว pressurizer) ซึ่งในระหว่างการฝึกอบรม พวกเขาได้รับคำสั่งที่จะไม่อนุญาตให้เกิดขึ้น ความสับสนนี้เป็นสาเหตุที่สำคัญของความล้มเหลวแต่แรกในการรับรู้ถึงอุบัติเหตุว่าเกิดจากความสูญเสียของน้ำหล่อเย็น (อังกฤษ: loss-of-coolant accident) และนำผู้ควบคุมเครื่องไปสู่การปิดปั๊มระบายความร้อนหลักฉุกเฉิน ซึ่งได้ถูกสตาร์ตเครื่องโดยอัตโนมัติหลังจากที่วาล์วระบายนำร่องติดขัดและเปิดค้างและเริ่มต้นสูญเสียน้ำหล่อเย็น เนื่องจากกลัวว่าระบบจะถูกเติมด้วยน้ำจนล้น[23]

ด้วยวาล์วระบายนำร่องยังคงเปิดอยู่ ถังระบายของตัวสร้างความดัน (อังกฤษ: pressurizer) ที่ใช้เก็บรวบรวมสิ่งปล่อยออกจากวาล์วระบายนำร่องจะถูกเติมจนล้น มีผลทำให้บ่อกักเก็บของอาคารคลุมเครื่องปฏิกรณ์ (อังกฤษ: Containment building) เต็มและส่งสัญญาณเตือนภัยที่เวลา 04:11 ในตอนเช้า เสียงเตือนนี้ พร้อมกับอุณหภูมิที่สูงกว่าปกติในสายการปล่อยของวาล์วระบายนำร่องและการสูงขึ้นอย่างผิดปกติของอุณหภูมิและความกดดันของอาคารคลุมเครื่องปฏิกรณ์เป็นข้อบ่งชี้ที่ชัดเจนว่ามีอุบัติเหตุจากการสูญเสียของน้ำหล่อเย็นเกิดขึ้นอย่างต่อเนื่อง แต่ไฟบอกสถานะเหล่านี้ถูกละเลยแต่แรกโดยผู้ควบคุมเครื่อง[24] เมื่อเวลา 04:15 ในตอนเช้า ไดอะแฟรมระบายของถังระบายในตัว pressurizer ก็แตก และน้ำหล่อเย็นที่มีกัมมันตรังสีก็เริ่มที่จะรั่วไหลออกมาเข้าไปในอาคารคลุมเครื่องปฏิกรณ์ทั่วไป น้ำหล่อเย็นที่มีกัมมันตรังสีนี้ถูกสูบจากบ่อกักเก็บในอาคารคลุมเครื่องปฏิกรณ์ไปยังอาคารเสริมที่อยู่นอกอาคารคลุมเครื่องปฏิกรณ์หลัก จนกระทั่งปั๊มของบ่อเก็บกักหยุดการทำงานเมื่อเวลา 04:39 ในตอนเช้า[25]

หลังจากผ่านไปเกือบ 80 นาทีของอุณหภูมิที่เพิ่มขึ้นอย่างช้า ๆ ปั๊มน้ำหล่อเย็นของเครื่องปฏิกรณ์หลักสี่เครื่องของวงน้ำหลักเริ่มที่จะเป็นโพรงอากาศ (อังกฤษ: cavitation) เนื่องจากการผสมกันของฟองไอน้ำกับน้ำ แทนที่จะเป็นน้ำอย่างเดียวที่ไหลผ่านพวกมันไป เครื่องสูบน้ำถูกปิดลง และก็เชื่อว่าการไหลเวียนโดยธรรมชาติจะทำให้น้ำยังคงหมุนเวียนต่อไป ไอน้ำที่อยู่ในระบบป้องกันไม่ให้น้ำไหลผ่านแกนกลางและเมื่อน้ำหยุดการไหลเวียน มันขะถูกแปลงให้เป็นไอน้ำในปริมาณที่เพิ่มขึ้น ประมาณ 130 นาทีหลังจากการทำงานที่ผิดพลาดครั้งแรก ด้านบนของแกนเครื่องปฏิกรณ์ได้เปิดออกและความร้อนเข้มข้นได้ทำให้ปฏิกิริยาที่เกิดขึ้นระหว่างการก่อตัวของไอน้ำในแกนเครื่องปฏิกรณ์กับปลอกหุ้มแท่งเชื้อเพลิงนิวเคลียร์ที่เป็นสาร Zircaloy ได้ผลผลิตออกมาก๊าซเซอร์โคเนียมไดอ๊อกไซด์, ไฮโดรเจนและความร้อนเพิ่มขึ้น ปฏิกิริยานี้ได้ละลายปลอกหุ้มแท่งเชื้อเพลิงนิวเคลียร์และทำความเสียหายให้กับเม็ดเชื้อเพลิง ซึ่งได้ปล่อยไอโซโทปกัมมันตรังสีออกมาให้กับสารหล่อเย็นเตาปฏิกรณ์ และผลิตก๊าซไฮโดรเจนที่เชื่อว่าได้ทำให้เกิดการระเบิดขนาดเล็กในอาคารคลุมเครื่องปฏิกรณ์ต่อมาในบ่ายวันนั้น[26]

กราฟิกของ NRC แสดงรูปแบบการทำงานในช่วง end-state ของ TMI-2

เมื่อเวลา 06:00 มีการเปลี่ยนกะในห้องควบคุม กลุ่มที่มาใหม่สังเกตเห็นว่าอุณหภูมิในท่อหางของวาล์วระบายนำร่องและถังที่ถืออยู่มีค่าสูงเกินไปและมีการใช้วาล์วสำรองที่เรียกว่า "วาล์วกั้น" เพื่อปิดการระบายของน้ำหล่อเย็นผ่านทางวาล์วระบายนำร่อง แต่ประมาณ 32,000 แกลลอน (120,000 ลิตร) ของน้ำหล่อเย็นได้รั่วไหลออกมาเรียบร้อยแล้วจากวงรอบน้ำหลัก[27] การรั่วไหลยังคงดำเนินต่อไปจนกระทั่ง 165 นาทีหลังจากการเริ่มต้นของปัญหาที่มีการเตือนภัยรังสีเมื่อน้ำที่ปนเปื้อนไหลเข้าไปถึงเครื่องตรวจจับ โดยเวลานั้นระดับรังสีในน้ำหล่อเย็นหลักอยู่ที่ประมาณ 300 เท่าของระดับที่คาดไว้และโรงไฟฟ้ามีการปนเปื้อนอย่างจริงจัง

การประกาศภาวะฉุกเฉิน

เมื่อเวลา 06:56 หัวหน้าโรงไฟฟ้าประกาศภาวะฉุกเฉินในพื้นที่และน้อยกว่า 30 นาทีต่อมาผู้จัดการโรงไฟฟ้าแกรี่ มิลเลอร์ประกาศภาวะฉุกเฉินทั่วไป หมายถึงการมี "ศักยภาพสำหรับผลกระทบที่ร้ายแรงเกี่ยวกับรังสี" ที่มีต่อประชาชนโดยทั่วไป[28] และปริมณฑล เอดิสันได้แจ้งต่อสำนักงานจัดการเหตุฉุกเฉินเพนซิลเวเนีย (PEMA) ซึ่งจากนั้นก็ติดต่อกับหน่วยงานของรัฐและท้องถิ่น ได้แก่ ผู้ว่าการรัฐเพนซิลเวเนียนายริชาร์ด แอล Thornburgh และรองผู้ว่านายวิลเลียม สแครนตันที่สาม ผู้ที่ได้รับมอบหมายให้รับผิดชอบจาก Thornburgh สำหรับการเก็บรวบรวมและรายงานข้อมูลเกี่ยวกับอุบัติเหตุที่เกิดขึ้น[29] ความไม่แน่นอนของผู้ควบคุมเครื่องที่โรงไฟฟ้าได้ถูกสะท้อนให้เห็นในคำกล่าวที่เป็นชิ้น ๆ คลุมเครือหรือขัดแย้งที่กล่าวโดย Met Ed (บริษัทเมโทรโพลิตันเอดิสันซึ่งเป็นหนึ่งในบริษัทที่ดำเนินงานยูทิลิตี้ในภูมิภาค) ที่กล่าวกับหน่วยงานภาครัฐและกับสื่อมวลชน โดยเฉพาะอย่างยิ่งเกี่ยวกับความเป็นไปได้และความรุนแรงของการปลดปล่อยกัมมันตภาพรังสีนอกเขตโรงงาน นายสแครนตันได้จัดงานแถลงข่าวที่เขามั่นใจ แต่ก็ยังสับสน เกี่ยวกับความเป็นไปได้นี้ เขาระบุว่าแม้ว่าจะได้มีการ "ปล่อยขนาดเล็กของรังสี ... ไม่มีการเพิ่มขึ้นของระดับรังสีปกติ" ได้รับการตรวจพบ คำกล่าวเหล่านี้ขัดแย้งกับเจ้าหน้าที่คนอื่นและกับคำกล่าวของ Met Ed ซึ่งทั้งสองคนอ้างว่าไม่มีกัมมันตภาพรังสีถูกปล่อยตัวออกมา[30] ในความเป็นจริงการอ่านจากเครื่องมือที่โรงไฟฟ้าและเครื่องตรวจจับนอกสถานที่ได้ตรวจพบการเผยแพร่กัมมันตภาพรังสี ถึงแม้ว่าจะอยู่ในระดับที่ไม่น่าที่จะเป็นภัยคุกคามต่อสุขภาพของประชาชนตราบเท่าที่พวกมันอยู่ชั่วคราว และภายใต้เงื่อนไขที่ว่าบรรจุภัณฑ์ของเครื่องปฏิกรณ์ที่ปนเปื้อนอย่างสูงในตอนนั้นจะถูกเก็บรักษาอย่างดี[31]

ด้วยความโกรธที่ Met Ed ไม่ได้แจ้งให้ทราบก่อนที่จะดำเนินการระบายไอน้ำทิ้งจากโรงไฟฟ้า และเชื่อใจว่าบริษัทได้เล่นเบา ๆ กับความรุนแรงของการเกิดอุบัติเหตุ เจ้าหน้าที่ของรัฐหันไปหา NRC[32] หลังจากที่ได้รับรายงานของอุบัติเหตุที่เกิดขึ้นจาก Met Ed, NRC ได้เปิดใช้งานสำนักงานใหญ่เพื่อตอบสนองฉุกเฉินในเมือง Bethesda รัฐ Maryland และส่งเจ้าหน้าที่ไปเกาะทรีไมล์ ประธานของ NRC นายโจเซฟ Hendrie และผู้ตรวจราชการ นายวิกเตอร์ Gilinsky[33] ในตอนแรกได้มองไปที่อุบัติเหตุที่เกิดขึ้น ในคำพูดของนักประวัติศาสตร์ NRC นายซามูเอล วอล์คเกอร์ ว่าเป็น "สาเหตุสำหรับความกังวล แต่ไม่น่าตกใจ"[34] Gilinsky ได้บรรยายสรุปให้ผู้สื่อข่าวและสมาชิกของสภาคองเกรสเกี่ยวกับสถานการณ์และ แจ้งต่อเจ้าหน้าที่ทำเนียบขาว และในเวลา 10.00 น ได้พบกับสองคณะกรรมาธิการอื่น ๆ อย่างไรก็ตาม NRC ต้องเผชิญกับปัญหาที่เหมือนกันในการได้รับข้อมูลที่ถูกต้องในฐานะที่เป็นรัฐ และถูกขัดขวางต่อไปโดยการเป็นองค์กรที่มีการเตรียมพร้อมที่ไม่ดีในการจัดการกับเหตุฉุกเฉิน เนื่องจากมันขาดโครงสร้างคำสั่งที่ชัดเจนและอำนาจตามฏหมายที่จะบอกหน่วยงานสาธารณูปโภคว่าจะควรจะต้องทำอย่างไร หรือในการสั่งการอพยพออกจากพื้นที่ท้องถิ่น[35]

ในบทความปี 2009 Gilinsky เขียนว่าต้องใช้เวลาห้าสัปดาห์ที่จะเรียนรู้ว่า "ผู้ควบคุมเครื่องปฏิกรณ์ได้วัดอุณหภูมิเชื้อเพลิงมีค่าใกล้จุดหลอมละลาย"[36] เขายังเขียนต่ออีกว่า: "เราไม่ได้เรียนรู้มานานหลายปี - จนกระทั่งอ่างเครื่องปฏิกรณ์ได้เปิดร่างกายของมันออกมา - ว่า เมื่อตอนที่ผู้ควบคุมเครื่องโรงไฟฟ้าโทรฯมาที่ NRC เมื่อเวลาประมาณ 08:00 ในตอนเช้า ประมาณครึ่งหนึ่งของเชื้อเพลิงยูเรเนียมได้หลอมละลายไปเรียบร้อยแล้ว"[36]

มันก็ยังไม่ชัดเจนกับเจ้าหน้าที่ห้องควบคุมว่าระดับน้ำในวงจรหลักอยู่ในระดับต่ำและว่ามากกว่าครึ่งหนึ่งของแกนโผล่ออกมาหรือไม่ กลุ่มของคนงานได้เข้าไปอ่านจากตัวเลขบนเครื่องวัดอุณหภูมิ (อังกฤษ: thermocouple) และเก็บตัวอย่างวงจรน้ำหลัก เจ็ดชั่วโมงในระหว่างฉุกเฉิน น้ำใหม่ถูกสูบเข้าไปในวงจรน้ำหลักและวาล์วระบายสำรองถูกเปิดเพื่อลดความดันเพื่อให้วงจรสามารถถูกเติมด้วยน้ำ หลังจาก 16 ชั่วโมงปั๊มวงจรหลักถูกเปิดขึ้นอีกครั้งและอุณหภูมิของแกนกลางเริ่มตกลง ส่วนใหญ่ของแกนถูกหลอมละลายและระบบยังคงเป็นอันตรายจากกัมมันตรังสี

ในวันที่สามหลังจากอุบัติเหตุ ฟองไฮโดรเจนถูกพบในโดมของอ่างความดัน และกลายเป็นจุดสนใจของความกังวล การระเบิดของก๊าซไฮโดรเจนอาจไม่เพียงแต่ทำลายอ่างความดันเท่านั้น แต่(ทั้งนี้ขึ้นอยู่กับขนาดของมัน)อาจจะประนีประนอมความสมบูรณ์ของอ่างบรรจุที่นำไปสู่การปลดปล่อยขนาดใหญ่ของสารกัมมันตรังสี อย่างไรก็ตามมันถูกกำหนดว่าไม่มีออกซิเจนในอ่างความดัน ซึ่งเป็นสิ่งจำเป็นเบื้องต้นสำหรับไฮโดรเจนที่จะเผาไหม้หรือระเบิด ขั้นตอนในทันทีคือการลดฟองไฮโดรเจน และจนถึงวันรุ่งขึ้น มันก็มีขนาดเล็กลงอย่างมีนัยสำคัญ ในช่วงสัปดาห์ถัดไป ไอน้ำและไฮโดรเจนถูกกำจัดออกจากเครื่องปฏิกรณ์โดยใช้ recombiner แบบเร่งปฏิกิริยาและก่อให้เกิดความโต้แย้งโดยระบายตรงไปยังชั้นบรรยากาศ

การปล่อยสารกัมมันตรังสี

เมื่อแถวแรกของการจำกัดวงปัญหาถูกทำลายในช่วงที่เกิดอุบัติเหตุโรงไฟฟ้าที่ใช้เครื่องปฏิกรณ์ มีความเป็นไปว่าเชื้อเพลิงหรือผลผลิตจากฟิชชัน (อังกฤษ: Fission product) ที่อยู่ภายในอาจจะหลุดลอดเข้าไปในสิ่งแวดล้อม แม้ว่าปลอกหุ้มเชื้อเพลิงเซอร์โคเนียมได้ถูกทำลายในเครื่องปฏิกรณ์นิวเคลียร์อื่นโดยไม่ได้ปลดปล่อยกัมมันตรังสีออกสู่สิ่งแวดล้อมก็ตาม ที่ TMI-2 (Three Miles Island 2) ผู้ควบคุมเครื่องได้อนุญาตให้ปล่อยผลผลิตจากฟิชชั่นออกจากอาคารคลุมเครื่องปฏิกรณ์ที่มีเครื่องกั้นอื่น ๆ [ต้องการอ้างอิง] นอกจากนั้นยังค้นพบในภายหลังด้วยว่าไม่เพียงแต่ผู้ที่อาศัยอยู่ในบริเวณใกล้เคียงเท่านั้นที่ได้รับผลกระทบ แต่ผู้ควบคุมเครื่องเกาะสามไมล์ยังสั่งทิ้งน้ำกัมมันตรังสีลงไปในแม่น้ำ Susquehanna จึงส่งผลกระทบต่อผู้ที่อยู่ปลายน้ำอีกด้วย

เรื่องนี้เกิดขึ้นเมื่อปลอกหุ้มได้รับความเสียหายในขณะที่วาล์วระบายที่ทำงานด้วยนำร่องยังคงติดขัดและเปิดค้างอยู่ ผลผลิตจากฟิชชั่นได้ถูกปลดปล่อยลงไปในน้ำหล่อเย็นของเตาปฏิกรณ์ เนื่องจากวาล์วระบายดังกล่าวยังติดขัดอยู่และอุบัติเหตุการสูญเสียน้ำหล่อเย็นยังคงคืบหน้าต่อไป น้ำหล่อเย็นในวงจรหลักที่มีผลผลิตจากฟิชชันและ/หรือเชื้อเพลิงได้ถูกปล่อยออกมาและในที่สุดก็จบลงในอาคารเสริม ซึ่งอาคารเสริมนี้อยู่นอกขอบเขตอาคารคลุมเครื่องปฏิกรณ์

หลักฐานเกิดขึ้นจากการเตือนภัยรังสีที่ดังขึ้นในที่สุด อย่างไรก็ตามเนื่องจากผลผลิตจากฟิชชันที่ถูกปล่อยออกมามีปริมาณน้อยมากและกลายเป็นของแข็งที่อุณหภูมิห้อง จึงมีรายงานการปนเปื้อนรังสีน้อยมากในสภาพแวดล้อม ไม่มีระดับของรังสีที่มีนัยสำคัญกับอุบัติเหตุของ TMI-2 ด้านนอกของ TMI-2 ตามรายงาน Rogovin ส่วนใหญ่ของไอโซโทปรังสีที่ปล่อยออกมาเป็นก๊าซมีตระกูลพวกซีนอนและคริปทอน รายงานกล่าวว่า "ในช่วงของการเกิดอุบัติเหตุ ประมาณ 2.5 MCi (93 PBq) ก๊าซกัมมันตรังสีมีตระกูลและ 15 Ci (560 GBq) ของรังสีไอโอดีนถูกปล่อยออกมา" ส่งผลให้ปริมาณเฉลี่ย (อังกฤษ: average dose) ขนาด 1.4 มิลลิเรม (14 μSv) ไปให้กับคนที่อยู่ใกล้โรงไฟฟ้าสองล้านคน รายงานได้เปรียบเทียบกับการปลดปล่อยนี้กับ 80 มิลลิเรม (800 μSv) ต่อปีเพิ่มเติมจากที่ได้รับจากการใช้ชีวิตในเมืองที่อยู่สูงเช่นเดนเวอร์[37] ในขณะที่การเปรียบเทียบเพิ่มเติม ผู้ป่วยจะได้รับ 3.2 มิลลิเรม (32 μSv) จากการเอกซเรย์หน้าอกหนึ่งครั้ง - มากกว่าสองเท่าของปริมาณเฉลี่ยของผู้ที่ได้รับใกล้โรงไฟฟ้า[38] การวัดรังสีเบต้าไม่ได้รวมอยู่ในรายงาน

ภายในไม่กี่ชั่วโมงของการเกิดอุบัติเหตุ สำนักงานคุ้มครองสิ่งแวดล้อมของสหรัฐอเมริกา (EPA) เริ่มการสุ่มตัวอย่างรายวันของสภาพแวดล้อมที่สามสถานีใกล้ที่สุดกับโรงไฟฟ้า การตรวจเฝ้าอย่างต่อเนื่องที่ 11 สถานีไม่ได้มีการจัดทำจนถึงวันที่ 1 เมษายนและไม่ได้ขยายไปที่ 31 สถานีจนถึงวันที่ 3 เมษายน การวิเคราะห์ระหว่างหน่วยงานได้ข้อสรุปว่าอุบัติเหตุที่เกิดขึ้นไม่ได้ยกระดับกัมมันตภาพรังสีให้ไปสูงกว่าระดับพื้นหลังมากพอที่จะทำให้เกิดการเสียชีวิตด้วยโรคมะเร็งเพิ่มเติมแม้แต่คนเดียวในหมู่คนที่อยู่ในพื้นที่ แต่การวัดรังสีเบต้าไม่ได้รวมอยู่ด้วย EPA ไม่พบการปนเปื้อนในน้ำ ดิน ตะกอนหรือในตัวอย่างพืช[39]

นักวิจัยที่วิทยาลัยดิกคินสันที่อยู่ใกล้เคียง - ซึ่งมีอุปกรณ์การตรวจสอบรังสีที่มีความไวมากพอที่จะตรวจจับการทดสอบอาวุธปรมาณูในบรรยากาศของจีนได้ - ได้เก็บตัวอย่างดินจากพื้นที่ปลอดภัยสองสัปดาห์และตรวจไม่พบระดับที่สูงมากขึ้นของกัมมันตภาพรังสี ยกเว้นหลังจากฝนตก (น่าจะเกิดจากเรดอนธรรมชาติ ไม่ใช่เกิดจากอุบัติเหตุ)[40] นอกจากนี้ กวางหางขาวที่หากินในระยะ 50 ไมล์ (80 กิโลเมตร) จากเครื่องปฏิกรณ์ภายหลังจากที่เกิดเหตุถูกพบว่ามีระดับที่สูงขึ้นอย่างมีนัยสำคัญของซีเซียม-137 มากกว่าในกวางในมณฑลที่อยู่โดยรอบโรงไฟฟ้าอีกด้วย ถึงแม้ว่าจะเป็นอย่างนั้น ระดับที่สูงขึ้นยังคงต่ำกว่ากวางที่พบเห็นในส่วนอื่น ๆ ของประเทศในช่วงสูงสุดของการทดสอบอาวุธในบรรยากาศ[41] ถ้าหากมีการปลดปล่อยของกัมมันตภาพรังสีในระดับที่สูงขึ้นจริง ระดับที่เพิ่มขึ้นของไอโอดีน-131 และซีเซียม-137 น่าจะมีการคาดหวังว่าจะถูกตรวจพบในนมตัวอย่างจากวัวและแพะ ระดับที่สูงยังตรวจไม่พบ[42] การศึกษาทางวิทยาศาสตร์ต่อมาตั้งข้อสังเกตว่าตัวเลขการปล่อยรังสีอย่างเป็นทางการมีความสอดคล้องกับข้อมูลที่มีอยู่ในเครื่องวัดปริมาณรังสี (อังกฤษ: dosimeter)[43] แม้ว่าคนอื่นจะสังเกตเห็นความไม่สมบูรณ์ของข้อมูลนี้ โดยเฉพาะอย่างยิ่งสำหรับการปลดปล่อยในช่วงต้น[44]

ตามตัวเลขอย่างเป็นทางการ, จากการรวบรวมโดยคณะกรรมการ Kemeny ในปี 1979 จากเมโทรโพลิตันเอดิสันและข้อมูลของ NRC, ปริมาณสูงสุดที่ 480 PBq (13 MCI) ของก๊าซกัมมันตรังสีมีตระกูล (ส่วนใหญ่เป็นซีนอน) ถูกปลดปล่อยโดยเหตุการณ์ที่เกิดขึ้น[45] อย่างไรก็ตาม ก๊าซมีตระกูลเหล่านี้ได้รับการพิจารณาว่าค่อนข้างไม่เป็นอันตราย[46] และมีเพียง 481-629 GBq (13.0-17.0 Ci) ของไอโอดีน-131 ที่เป็นตัวก่อให้เกิดมะเร็งต่อมไทรอยด์เท่านั้นที่ถูกปล่อยออกมา[45] ปริมาณรวมที่ปล่อยออกมาตามตัวเลขเหล่านี้เป็นสัดส่วนที่ค่อนข้างน้อยของประมาณ 370 EBQ (10 GCI) ในเครื่องปฏิกรณ์[46] มันถูกพบในภายหลังว่าประมาณครึ่งหนึ่งของแกนกลางถูกหลอมละลายและปลอกหุ้มประมาณ 90% ของแท่งเชื้อเพลิงเกิดความเสียหาย[14][47] กับ 5 ฟุต (1.5 เมตร) ของแกนหายไป และประมาณ 20 ตัน (18 t) ของยูเรเนียมกำลังไหลลงไปที่ด้านล่างของอ่างความดัน ก่อตัวเป็นก้อน Corium[48] อ่างเครื่องปฏิกรณ์ - ระดับที่สองของภาชนะบรรจุหลังจากปลอกหุ้ม - ได้รักษาความสมบูรณ์เอาไว้ และเก็บเชื้อเพลิงที่ได้รับความเสียหายที่มีเกือบทั้งหมดของไอโซโทปกัมมันตรังสีไว้ในแกนกลาง[49]

กลุ่มการเมืองต่อต้านนิวเคลียร์ได้โต้แย้งผลการวิจัยของคณะกรรมการ Kemeny โดยอ้างว่าการวัดอย่างอิสระได้ให้หลักฐานของระดับรังสีที่สูงกว่าปกติถึงห้าเท่าในสถานที่หลายร้อยไมล์ใต้ลมจากเกาะทรีไมล์[50] แรนดัล ธอมป์สันช่างเทคนิคด้นสุขภาพร่างกายที่ถูกจ้างมาให้ทำการตรวจสอบการปล่อยกัมมันตรังสีที่เกาะทรีไมล์หลังจากที่เกิดอุบัติเหตุกล่าวว่า "ผมคิดว่าตัวเลขที่อยู่บนเว็บไซต์ของ NRC จะผิดไปในหลัก 100 ถึงหลัก 1000"[46][51]

คนในอื่น ๆ บางคนรวมทั้ง อาร์นี Gundersen อดีตผู้บริหารอุตสาหกรรมนิวเคลียร์ซึ่งตอนนี้เป็นพยานผู้เชี่ยวชาญในประเด็นด้านความปลอดภัยนิวเคลียร์[52][53] ทำการเรียกร้องแบบเดียวกัน นั่นคือ Gundersen เสนอหลักฐานบนพื้นฐานของข้อมูลการตรวจสอบความดัน สำหรับการระเบิดของไฮโดรเจนไม่นานก่อน 2 โมงเย็นของวันที่ 28 มีนาคม 1979 ซึ่งอาจจะมีการระบุวิธีการสำหรับปริมาณที่สูงของรังสีที่จะเกิดขึ้น[46] Gundersen อ้างถึงคำให้การเป็นลายลักษณ์อักษรจากผู้ควบคุมเครื่องปฏิกรณ์ทั้งสี่เครื่อง ว่าผู้จัดการโรงไฟฟ้าได้ตระหนักถึงการพุ่งขึ้นสูงของความดันอย่างมาก และหลังจากนั้นความดันภายในได้ลดลงสู่แรงดันภายนอก Gundersen ยังตั้งข้อสังเกตด้วยว่าห้องควบคุมก็สั่นสะเทือนและประตูถูกลมพัดปลิวหลุดจากบานพับ อย่างไรก็ตามรายงานของ NRC อย่างเป็นทางการพูดถึงเพียงแค่เป็น "การเผาไหม้ไฮโดรเจน"[46] คณะกรรมการ Kemeny อ้างถึง "การเผาไหม้หรือการระเบิดที่ทำให้เกิดความกดดันเพิ่มขึ้นไปที่ 28 ปอนด์ต่อตารางนิ้วในอาคารคลุมเครื่องปฏิกรณ์"[54] นสพ. วอชิงตันโพสต์ รายงานว่า "เมื่อเวลาประมาณ 14:00 ด้วยความดันเกือบจะลงไปยังจุดที่เครื่องสูบน้ำระบายความร้อนขนาดใหญ่จะถูกนำเข้าสู่การเล่น การระเบิดไฮโดรเจนขนาดเล็กก็เขย่าเครื่องปฏิกรณ์"[55]

ใกล้เคียง

อุบัติเหตุนิวเคลียร์เกาะทรีไมล์ อุบัติรักเกาะสวรรค์ อุบัติรักข้ามขอบฟ้า (ละครโทรทัศน์ปี 2562) อุบัติการณ์และอุบัติเหตุบนเที่ยวบินการบินไทย อุบัติการณ์มุกเดน อุบัติรักเทวา อุบัติเหตุ อุบัติการณ์สุสานโกเบงเหลง อุบัติการณ์ 28 กุมภาพันธ์ อุบัติรักข้ามขอบฟ้า 2

แหล่งที่มา

WikiPedia: อุบัติเหตุนิวเคลียร์เกาะทรีไมล์ http://books.google.com.au/books?id=Kn6YhNtyVigC&p... http://books.google.com.au/books?id=YSdz4Cxqnx4C&p... http://audiovideo.economist.com/ http://fairewinds.com/content/who-we-are http://books.google.com/books?id=PdkJo5yerGYC&pg=P... http://news.google.com/newspapers?id=Cq8yAAAAIBAJ&... http://news.google.com/newspapers?id=dtEyAAAAIBAJ&... http://news.google.com/newspapers?id=sM1RAAAAIBAJ&... http://articles.latimes.com/2011/mar/18/world/la-f... http://thebulletin.metapress.com/content/t07784752...