การใช้งาน ของ เคิร์ล

ในทางปฏิบัติ นิยามข้างต้นไม่ค่อยได้ใช้เพราะในเกือบทุกกรณี ตัวดำเนินการเคิร์ลสามารถนำมาใช้ในกรอบของระบบพิกัดเชิงเส้นโค้งบางระบบ ที่มีการคำนวณหาสูตรที่ง่ายกว่าเอาไว้แล้ว

สัญกรณ์ ∇ × F มีต้นกำเนิดในความคล้ายคลึงกับผลคูณไขว้สามมิติ และมีประโยชน์ในการช่วยจำสูตรหาเคิร์ลในระบบพิกัดคาร์ทีเซียน โดย ∇ แทนตัวดำเนินการเดล สัญกรณ์เช่นนี้ถือเป็นปกติใน ฟิสิกส์ และ พีชคณิต

เมื่อกระจายสูตร ∇ × F ในระบบพิกัดคาร์ทีเซียนสามมิติ (ดู เดลในพิกัดทรงกระบอกและทรงกลม สำหรับสูตรในระบบพิกัดทรงกลม และทรงกระบอก พิกัด) สำหรับ F ที่มีองก์ประกอบเวกเตอร์เป็น [Fx, Fy, Fz] จะได้เป็น

| i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z | {\displaystyle {\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\[5pt]{\dfrac {\partial }{\partial x}}&{\dfrac {\partial }{\partial y}}&{\dfrac {\partial }{\partial z}}\\[10pt]F_{x}&F_{y}&F_{z}\end{vmatrix}}}

โดยที่ i, j, และ k เป็น เวกเตอร์หน่วย สำหรับ แกน x y และ z ตามลำดับ สิ่งนี้จะขยายออกดังนี้: [5]

( ∂ F z ∂ y − ∂ F y ∂ z ) i + ( ∂ F x ∂ z − ∂ F z ∂ x ) j + ( ∂ F y ∂ x − ∂ F x ∂ y ) k {\displaystyle \left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right)\mathbf {i} +\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right)\mathbf {j} +\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right)\mathbf {k} }

แม้ว่าจะแสดงในรูปแบบของพิกัด ผลลัพธ์นี้จะไม่เปลี่ยนแปลงภายใต้การหมุนที่เหมาะสมของแกนพิกัด แต่จะพลิกด้านภายใต้การสะท้อน