ทฤษฎีของสาเหตุ ของ เหตุการณ์การสูญพันธุ์ยุคเพอร์เมียน–ไทรแอสซิก

การระบุสาเหตุที่แท้จริงของ/เหตุการณ์สูญพันธุ์ยุคเพอร์เมียน-ไทรแอสซิกเป็นเรื่องยาก ส่วนใหญ่เป็นเพราะมันเกิดขึ้นเมื่อ 250 ล้านปีก่อน และตั้งแต่นั้นมาหลักฐานส่วนใหญ่ที่สามารถชี้หาสาเหตุถูกทำลายหรือจมลึกลงไปใต้หลาย ๆ ชั้นหินของโลก นอกจากนั้นก้นทะเลทั้งหมดถูกแปลงใหม่อย่างสมบูรณ์ทุก ๆ 200 ล้านปีโดยการแปรสัณฐานแผ่นธรณีภาคอย่างต่อเนื่องและการขยายตัวของพื้นมหาสมุทรโดยไม่ทิ้งสิ่งบ่งบอกต่าง ๆ ที่เป็นประโยชน์ไว้ใต้มหาสมุทร

ถึงอย่างนั้น นักวิทยาศาสตร์ได้รวบรวมหลักฐานสำคัญสำหรับสาเหตุและมีการเสนอกลไกที่เกิดขึ้นหลายอย่าง ข้อเสนอนี้มีทั้งกระบวนการที่รุนแรงแบบหายนะและแบบค่อยเป็นค่อยไป (เช่นเดียวกับทฤษฎีสำหรับเหตุการณ์การสูญพันธุ์ยุคครีเทเชียส–พาลีโอจีน)

การชนของอุกกาบาต

การวาดภาพตามความคิดของศิลปินเกี่ยวกับเหตุการณ์สำคัญ: การชนกันระหว่างโลกและดาวเคราะห์น้อยที่มีเส้นผ่านศูนย์กลางไม่กี่กิโลเมตรจะปล่อยพลังงานออกมามากพอ ๆ กับการระเบิดของอาวุธนิวเคลียร์หลายล้านชิ้น

หลักฐานที่บ่งชี้สิ่งทีทำให้เกิดเหตุการณ์การสูญพันธุ์ยุคครีเทเชียส–พาลีโอจีนได้นำไปสู่การคาดเดาว่าการชนที่คล้ายคลึงกันนี้อาจเป็นสาเหตุของเหตุการณ์การสูญพันธุ์อื่น ๆ รวมถึงการสูญพันธุ์ P-Tr ด้วย และด้วยเหตุนี้ทำให้เกิดการค้นหาหลักฐานของการชนในช่วงเวลาของการสูญพันธุ์อื่น ๆ เช่น หลุมอุกกาบาตขนาดใหญ่ที่มีอายุการชนตรงกับยุคต่าง ๆ

หลักฐานที่ได้รับรายงานสำหรับเหตุการณ์ที่ส่งผลกระทบในช่วงของ P–Tr ได้แก่ ช็อคเก็ดควอตซ์ (shocked quartz) ที่หาได้ยากซึ่งพบในออสเตรเลียและแอนตาร์กติกา[61][62] ฟูลเลอรีนที่มีแก๊สจากนอกโลก[63] เศษอุกกาบาตในแอนตาร์กติกา[64] และธัญพืชที่อุดมไปด้วยธาตุเหล็ก นิกเกิล และซิลิกอน ซึ่งอาจสร้างขึ้นจากการชน[65] อย่างไรก็ตามก็ยังคงมีการถกเถียงถึงความถูกต้องของหลักฐานเหล่านี้[66][67][68][69] ตัวอย่างเช่นควอตซ์จากยอดกราไฟต์ในแอนตาร์กติกาซึ่งเมื่อก่อนเคยคิดว่าเป็นแบบ "ช็อคเก็ด" ได้รับการตรวจสอบอีกครั้งด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบออปติกและแบบส่องผ่าน คุณสมบัติที่สังเกตได้สรุปได้ว่าไม่ได้เกิดจากการช็อค แต่เป็นการเสียรูปของสภาพพลาสติก ซึ่งตรงกับการก่อตัวบนสภาพแวดล้อมของเปลือกโลกเช่นเหตุการณ์ต่าง ๆ ที่เกี่ยวกับภูเขาไฟ[70]

หลุมอุกกาบาตบนพื้นทะเลน่าจะเป็นหลักฐานที่แสดงถึงสาเหตุที่เป็นไปได้ของการสูญพันธุ์ P-Tr แต่ในตอนนี้หลุมดังกล่าวหายไปแล้ว เนื่องจาก 70% ของพื้นผิวโลกในปัจจุบันเป็นทะเล ทำให้ดาวเคราะห์น้อยหรือดาวหางอาจมีแนวโน้มที่จะพุ่งชนมหาสมุทรมากกว่าพื้นดินสองเท่า อย่างไรก็ตามเปลือกโลกมหาสมุทรที่เก่าแก่ที่สุดของโลกมีอายุเพียง 200 ล้านปีเนื่องจากถูกทำลายและสร้างใหม่ต่อเนื่องโดยการขยายตัวของพื้นมหาสมุทร นอกจากนี้หลุมอุกกาบาตที่เกิดขึ้นอาจถูกปกปิดโดยการท่วมของหินบะซอลต์จากด้านล่างจากการที่เปลือกโลกถูกเจาะหรืออ่อนตัวลง[71] อย่างไรก็ตามการถูกทำลายของพื้นทะเลไม่สามารถยอมรับเป็นคำอธิบายโดยสิ้นเชิงของเหตุการณ์นี้

สถานที่ที่อาจเกิดการชน

ได้รับการเสนอหลุมอุกกาบาตที่ทำให้เกิดการสูญพันธุ์ P–Tr หลายแห่ง รวมถึงโครงสร้าง Bedout 250 กม. (160 ไมล์) นอกชายฝั่งทางตะวันตกเฉียงเหนือของออสเตรเลีย[72] และหลุมอุกกาบาตวิลค์สแลนด์ขนาด 480 กม. ทางตะวันออกของแอนตาร์กติกา[73][74] หลุมอุกกาบาตทั้งสองแห่งยังไม่ได้รับการพิสูจน์และแนวคิดดังกล่าวได้รับการวิพากษ์วิจารณ์อย่างกว้างขวาง ลักษณะทางธรณีใต้น้ำแข็งของวิลค์สแลนด์มีอายุไม่แน่นอนมากอาจหลังกว่าการสูญพันธุ์ยุคเพอร์เมียน-ไทรแอสซิกเสียอีก

หลุมอุกกาบาต Araguainha ในบราซิลที่มีความยาว 40 กม. ได้รับการประมาณการชนเมื่อไม่นานมานี้ว่าเกิดขึ้นเมื่อ 254.7 ± 2.5 ล้านปีที่แล้วซึ่งทับซ้อนกับการประมาณของขอบเขตยุคเพอร์เมียน-ไทรแอสซิก[75] หินที่พบในท้องที่ส่วนใหญ่เป็นหินน้ำมัน พลังงานโดยประมาณที่ปล่อยออกมาจากชนของ Araguainha นั้นไม่เพียงพอที่จะทำให้เกิดการสูญพันธุ์ครั้งใหญ่ทั่วโลกโดยตรง แต่แรงสั่นสะเทือนของโลกในพื้นที่ขนาดมหึมาสามารถปล่อยน้ำมันและกแก๊สจำนวนมากออกจากหินที่แตกเป็นเสี่ยง ๆ ได้ ภาวะโลกร้อนอย่างกะทันหันที่เกิดขึ้นอาจส่งผลให้เหตุการณ์การสูญพันธุ์ยุคเพอร์เมียน-ไทรแอสสิกได้[76]

ภูเขาไฟ

ช่วงสุดท้ายของยุคเพอร์เมียนมีเหตุการณ์การท่วมของบะซอลต์สองครั้ง เอ๋อเหมยซานแทรปในประเทศจีนที่มีขนาดเล็กกว่าเกิดขึ้นในเวลาเดียวกันกับระยะการสูญพันธุ์สมัย Guadalupian ตอนปลายในพื้นที่ใกล้กับเส้นศูนย์สูตรในเวลานั้น[77][78] การปะทุของหินบะซอลต์ที่ก่อให้เกิดไซบีเรียนแทรปถือเป็นหนึ่งในเหตุการณ์เกี่ยวกับภูเขาไฟที่เป็นที่รู้จักที่ใหญ่ที่สุดในโลก ครอบคลุมพื้นที่กว่า 2,000,000 ตารางกิโลเมตร (770,000 ตารางไมล์)[79][80][81] วันที่เกิดไซบีเรียนแทรปและเหตุการณ์การสูญพันธุ์ครั้งนี้เชื่อมโยงกัน[82][83]

การปะทุของเอ๋อเหมยซานแทรปและไซบีเรียนแทรปอาจทำให้เกิดเมฆฝุ่นและละอองกรดซึ่งจะปิดกั้นแสงแดด ทำให้การสังเคราะห์แสงหยุดชะงักทั้งบนบกและในเขตมีแสงของมหาสมุทร ทำให้ห่วงโซ่อาหารพังทลาย การปะทุอาจทำให้เกิดฝนกรดเมื่อละอองลอยออกจากบรรยากาศ ซึ่งอาจฆ่าพืชบกหอยและสิ่งมีชีวิตที่เป็นแพลงก์ตอนซึ่งมีเปลือกแคลเซียมคาร์บอเนต การปะทุจะปล่อยแก๊สคาร์บอนไดออกไซด์ออกมาทำให้เกิดภาวะโลกร้อน เมื่อเมฆฝุ่นและละอองลอยทั้งหมดออกจากชั้นบรรยากาศ แก๊สคาร์บอนไดออกไซด์ส่วนเกินยังจะทำให้ความร้อนดำเนินต่อไปโดยไม่มีการบรรเทาใด ๆ[84]

ไซบีเรียนแทรปมีลักษณะที่ผิดปกติซึ่งทำให้อันตรายมากกว่าธรรมดา การท่วมหินบะซอลต์บริสุทธิ์ผลิตของเหลวลาวาที่มีความหนืดต่ำและไม่ปล่อยเศษเล็กเศษน้อยสู่ชั้นบรรยากาศ อย่างไรก็ตาม 20% ของผลผลิตของไซบีเรียแทรปที่ปะทุพบว่าเป็นไพโรคลาสติก (ประกอบด้วยเถ้าและเศษซากอื่น ๆ ที่สมารถปล่อยในชั้นบรรยากาได้ศสูง) ซึ่งจะเพิ่มผลการเย็นในระยะสั้น[85] ลาวาบะซอลต์ที่ปะทุหรือแทรกซึมเข้าไปในหินคาร์บอเนตจะกลายเป็นตะกอนที่อยู่ระหว่างการก่อตัวเป็นถ่านหินขนาดใหญ่ ซึ่งทั้งสองอย่างนี้จะปล่อยแก๊สคาร์บอนไดออกไซด์จำนวนมาก ซึ่งนำไปสู่ภาวะโลกร้อนที่รุนแรงขึ้นหลังจากฝุ่นและละอองลอยออกจากบรรยากาศ[86]

ในเดือนมกราคม 2011 ทีมงานซึ่งนำโดย Stephen Grasby จากการสำรวจทางธรณีวิทยาแห่งแคนาดา (Geological Survey of Canada) ที่คัลการี รายงานหลักฐานว่าภูเขาไฟทำให้ถ่านหินขนาดใหญ่ลุกเป็นไฟซึ่งอาจปล่อยคาร์บอนมากกว่า 3 ล้านล้านตัน ทีมงานพบคราบขี้เถ้าในชั้นหินลึกใกล้กับที่ปัจจุบันคือทะเลสาบบูคานัน ตามบทความของพวกเขา "เถ้าถ่านหินที่กระจายตัวจากการปะทุของไซบีเรียแทรปคาดว่าจะมีการปลดปล่อยองค์ประกอบที่เป็นพิษที่เกี่ยวข้องลงในแหล่งน้ำที่ได้รับผลกระทบ ซึ่งขี้เถ้าลอยที่เกิดการปะทุระดับ Mafic megascale เป็นเหตุการณ์ที่เกิดขึ้นในระยะยาวซึ่งจะทำให้เกิดการสะสมของเมฆเถ้าทั่วโลกอย่างมีนัยสำคัญ"[87][88] ในแถลงการณ์ Grasby กล่าวว่า "นอกจากภูเขาไฟเหล่านี้จะก่อให้เกิดการไหม้ของถ่านหินแล้ว เถ้าถ่านที่พ่นออกมายังมีพิษสูงและถูกปล่อยออกมาทั้งบนบกและในน้ำซึ่งอาจนำไปสู่เหตุการณ์การสูญพันธุ์ครั้งเลวร้ายที่สุดในประวัติศาสตร์โลก"[89] ในปี 2013 ทีมที่นำโดย Q.Y. Yang รายงานปริมาณสารระเหยที่สำคัญทั้งหมดที่ปล่อยออกมาจากไซบีเรียนแทรปซึ่งก็คือ 8.5 × 107 Tg CO2, 4.4 × 106 Tg CO, 7.0 × 106 Tg H2S และ 6.8 × 107 Tg SO2 ซึ่งข้อมูลดังกล่าวสนับสนุนแนวคิดที่ว่างการสูญพันธุ์ช่วงจบยุคเพอร์เมียนของโลกเกิดจากการปล่อยสารระเหยจำนวนมหาศาลจากไซบีเรียนแทรปสู่ชั้นบรรยากาศ[90]

ในปี 2015 มีหลักฐานและเส้นเวลาระบุว่าการสูญพันธุ์เกิดจากเหตุการณ์ในจังหวัดหินอัคนีขนาดใหญ่ของไซบีเรียนแทรป[91][92][93][94]

ในปี 2020 นักวิทยาศาสตร์ได้สร้างกลไกที่สามารถนำไปสู่เหตุการณ์การสูญพันธุ์ได้ในแบบจำลองทางชีวเคมี แสดงให้เห็นถึงผลที่ตามมาของปรากฏการณ์เรือนกระจกที่มีต่อสิ่งแวดล้อมทางทะเล และรายงานว่าการสูญพันธุ์ครั้งใหญ่สามารถย้อนกลับไปสู่การปล่อยแก๊สคาร์บอนไดออกไซด์จากภูเขาไฟ[95][96] มีการเผยแพร่หลักฐานเพิ่มเติม (อ้างอิงจากการเพิ่มขึ้นของการจับคู่กันระหว่างโคโรนานินและปรอท) ว่าการเผาไหม้ของภูเขาไฟเป็นสาเหตุของการสูญพันธุ์ครั้งใหญ่ได้รับการตีพิมพ์ในปี 2020[97][98]

การทำให้เป็นแก๊สของมีเทนไฮเดรต

นักวิทยาศาสตร์พบหลักฐานการลดลงของอัตราส่วนไอโซโทป 13C/12C ไป 1% อย่างรวดเร็วในหินคาร์บอเนตจากช่วงจบยุคเพอร์เมียน[99][100] นี่เป็นครั้งแรก ครั้งที่ใหญ่ที่สุด และครั้งที่เร็วที่สุด ของการลดลงและเพิ่มขึ้นของสารในเวลาสั้น ๆ (ลดลงและเพิ่มขึ้นในอัตราส่วน 13C/12C) ที่ดำเนินต่อไปจนกว่าอัตราส่วนไอโซโทปจะคงที่อย่างกะทันหันในยุคไทรแอสซิกกลาง ตามมาด้วยการฟื้นตัวของชีวิตที่สร้างปูน (สิ่งมีชีวิตที่ใช้แคลเซียมคาร์บอเนตเพื่อสร้างชิ้นส่วนแข็งเช่นเปลือกหอย)

มีปัจจัยหลายประการที่อาจมีส่วนทำให้อัตราส่วนของ 13C/12C ลดลง แต่ส่วนใหญ่พบว่าไม่เพียงพอที่จะอธิบายจำนวนที่เห็นนี้ได้ครบถ้วน:[101]

  • แก๊สจากการระเบิดของภูเขาไฟมีอัตราส่วน 13C / 12C ต่ำกว่ามาตรฐานประมาณ 0.5 ถึง 0.8% (δ13C ประมาณ −0.5 ถึง −0.8%) แต่การประเมินในปี 1995 สรุปได้ว่าปริมาณที่ต้องใช้ในการลดอัตราส่วนลงประมาณ 1.0% ทั่วโลกจำเป็นต้องมีการปะทุที่มีอันดับของขนาดมากกว่าหลักฐานใด ๆ ที่ถูกค้นพบ[102] (อย่างไรก็ตามการวิเคราะห์นี้ระบุเฉพาะ CO2 ที่เกิดจากหินหนืดเท่านั้น ไม่ใช่จากปฏิกิริยากับตะกอนที่มีคาร์บอนตามที่เสนอในภายหลัง)
  • การลดลงของกิจกรรมอินทรีย์จะดึง 12C ออกจากสิ่งแวดล้อมได้ช้าลงและปล่อยให้มันรวมอยู่ในตะกอนได้มากขึ้นซึ่งจะช่วยลดอัตราส่วน 13C / 12C กระบวนการทางชีวเคมีมักใช้ไอโซโทปที่เบากว่าเนื่องจากปฏิกิริยาเคมีจะถูกขับเคลื่อนด้วยแรงแม่เหล็กไฟฟ้าระหว่างอะตอม และไอโซโทปที่เบากว่าจะตอบสนองต่อแรงเหล่านี้ได้เร็วกว่า แต่จากการศึกษาการลดลงของ 13C / 12C ไป 0.3 ถึง 0.4% (δ13C −3 ถึง −4 ‰) ที่ Paleocene-Eocene Thermal Maximum (PETM) สรุปได้ว่าแม้การถ่ายเทคาร์บอนอินทรีย์ทั้งหมด (ในสิ่งมีชีวิต ดิน และที่ละลายในมหาสมุทร) เป็นตะกอนก็ยังคงไม่เพียงพอ แม้แต่หลุมที่อุดมไปด้วย 12C ขนาดใหญ่ ก็จะไม่ทำให้อัตราส่วน 13C / 12C ของหินรอบ PETM ลดลง[103]
  • สารอินทรียที่ฝังอยู่มีอัตราส่วน 13C / 12C ต่ำกว่าปกติ 2.0 ถึง 2.5% (δ13C −2.0 ถึง −2.5%) ในทางทฤษฎีหากระดับน้ำทะเลลดลงอย่างรวดเร็วตะกอนในทะเลตื้นจะเกิดออกซิเดชัน แต่คาร์บอนอินทรีย์ 6500–8400 กิกะตัน (1 กิกะตัน = 109 เมตริกตัน) จะต้องถูกออกซิไดซ์และกลับคืนสู่ระบบบรรยากาศในมหาสมุทรภายในเวลาไม่กี่แสนปีเพื่อลดอัตราส่วน 13C / 12C ลง 1.0% ซึ่งก็ไม่คิดว่าจะเป็นไปได้จริง[104] ยิ่งไปกว่านั้นระดับน้ำทะเลยังเพิ่มสูงขึ้นไม่ใช่ลดลงในช่วงเวลาที่สูญพันธุ์[105]
  • แทนที่จะเกิดการลดลงอย่างกะทันหันของระดับน้ำทะเลที่ก้นมหาสมุทร ช่วงที่มีภาวะ hyperoxia และ anoxia เป็นระยะ ๆ (สภาวะออกซิเจนสูงและออกซิเจนต่ำหรือเป็นศูนย์) อาจทำให้อัตราส่วน 13C / 12C ผันผวนในช่วงต้นของไทรแอสซิก และภาวะ anoxia ทั่วโลกอาจเป็นที่มาของปัญหาที่เกิดขึ้นชั่วคราวในช่วงจบยุคเพอร์เมียน ทวีปในช่วงปลายยุคเพอร์เมียนและตอนต้นของไทรแอสซิกอยู่รวมกันในเขตร้อนมากกว่าที่เป็นอยู่ในขณะนี้ และแม่น้ำในเขตร้อนขนาดใหญ่จะทิ้งตะกอนลงในแอ่งมหาสมุทรขนาดเล็กที่ถูกปิดล้อมบางส่วนที่ละติจูดต่ำ เงื่อนไขดังกล่าวสนับสนุนช่วงเวลาที่เต็มไปด้วยออกซิเจนและขาดออกซิเจน การเกิน/การขาดออกซิเจนจะส่งผลให้เกิดการปลดปล่อย/การฝังตามลำดับของคาร์บอนอินทรีย์จำนวนมากอย่างรวดเร็ว ซึ่งมีอัตราส่วน 13C / 12C ต่ำเนื่องจากกระบวนการทางชีวเคมีใช้ไอโซโทปที่เบากว่า[106] นั่นหรือเหตุผลอื่น ๆ จากอินทรีย์อาจมีส่วนรับผิดชอบต่อการผันผวนอัตราส่วน 13C / 12C ในทั้งสองเหตุการณ์ข้างต้นและรูปแบบเดียวกันในช่วงปลายของโปรเตโรโซอิก/แคมเบรียน

สมมติฐานอื่น ๆ ได้แก่ พิษในมหาสมุทรครั้งใหญ่ การปล่อย CO2 จำนวนมาก[107] และการจัดโครงสร้างใหม่ของวัฏจักรคาร์บอนในระยะยาวทั่วโลก[108]

ก่อนที่จะมีการพิจารณาการเผาตะกอนคาร์บอเนตโดยภูเขาไฟ กลไกที่เสนอเพียงอย่างเดียวที่เพียงพอที่จะทำให้อัตราส่วน 13C / 12C ลดลง 1% ทั่วโลกคือการปล่อยแก๊สมีเทนจากมีเทนคลาเทรต แบบจำลองวัฏจักรคาร์บอนยืนยันว่ามีผลเพียงพอที่จะทำให้เกิดการลดลงที่เห็นนี้ได้[109][110] มีเทนคลาเทรตหรือที่เรียกว่ามีเธนไฮเดรตประกอบด้วยโมเลกุลของมีเธนที่ติดอยู่ในกรงของโมเลกุลของน้ำ แก๊สมีเทนที่ผลิตโดยเมทาโนเจน (สิ่งมีชีวิตเซลล์เดียวที่เห็นด้วยกล้องจุลทรรศน์) มีอัตราส่วน 13C / 12C ต่ำกว่าปกติประมาณ 6.0% (δ13C −6.0%) เมื่อความดันและอุณหภูมิผสมกันอย่างเหมาะสมมันจะถูกขังอยู่ในคลาเทรตใกล้กับพื้นผิวของดินระเบิดและในปริมาณมากที่ขอบทวีป (ไหล่ทวีปและก้นทะเลที่ใกล้กับไหล่ทวีป) โดยปกติแล้วมีเธนไฮเดรตในมหาสมุทรจะถูกฝังอยู่ในตะกอนที่น้ำทะเลมีความลึกอย่างน้อย 300 ม. (980 ฟุต) สามารถพบได้สูงถึง 2,000 ม. (6,600 ฟุต) ใต้พื้นทะเล แต่โดยปกติแล้วจะอยู่ใต้พื้นทะเลประมาณ 1,100 ม. (3,600 ฟุต) เท่านั้น[111]

พื้นที่ที่ลาวาปกคลุมจากการปะทุของไซบีเรียนแทรปมีขนาดใหญ่กว่าที่คิดไว้ในตอนแรกประมาณสองเท่าและพื้นที่เพิ่มเติมส่วนใหญ่เป็นทะเลตื้นในเวลานั้น ก้นทะเลอาจมีการสะสมของแก๊สมีเทนไฮเดรตและลาวาทำให้เกิดการแยกตัวออกจากกันปล่อยแก๊สมีเทนจำนวนมหาศาล[112] การปล่อยแก๊สมีเทนจำนวนมากอาจทำให้เกิดภาวะโลกร้อนอย่างมีนัยสำคัญเนื่องจากแก๊สมีเทนเป็นแก๊สเรือนกระจกที่ทรงพลังมาก มีหลักฐานที่ชัดเจนแสดงให้เห็นว่าอุณหภูมิของโลกเพิ่มขึ้นประมาณ 6°C (10.8°F) ใกล้เส้นศูนย์สูตรและเพิ่มขึ้นอีกตามละติจูดที่สูงขึ้น เช่น อัตราส่วนไอโซโทปของออกซิเจนลดลงอย่างรวดเร็ว (18O/16O)[113] และการสูญพันธุ์ของพืช Glossopteris (Glossopteris และพืชที่เติบโตในพื้นที่เดียวกัน) ซึ่งต้องการสภาพอากาศที่หนาวเย็นซึ่งแทนที่ด้วยพืชที่อยู่ในละติจูดสมัยก่อนที่ต่ำกว่า[114]

อย่างไรก็ตามรูปแบบของการเปลี่ยนแปลงของไอโซโทปที่คาดว่าจะเป็นผลมาจากการปล่อยแก๊สมีเทนจำนวนมากไม่ตรงกับรูปแบบที่เห็นตลอดช่วงแรกของยุคไทรแอสซิก ไม่ใช่เพียงแค่เหตุการณ์ขนาดนั้นต้องมีการปล่อยแก๊สมีเทนมากถึงห้าเท่าตามที่เกิดขึ้นในช่วง PETM แต่จะต้องได้รับการฝังซ้ำในอัตราที่สูงเกินความเป็นจริงเพื่ออธิบายการเพิ่มขึ้นอย่างรวดเร็วของอัตราส่วน 13C / 12C (ตอนที่มี δ13C เป็นบวกสูง) ตลอดช่วงต้นไทรแอสซิกก่อนที่จะมีการปล่อยออกมาอีกหลายครั้ง

การขาดออกซิเจน

พบหลักฐานการเกิด anoxia (การขาดออกซิเจนอย่างรุนแรง) ในมหาสมุทรอย่างกว้างขวาง และ euxinia (การมีไฮโดรเจนซัลไฟด์) จากยุคเพอร์เมียนตอนปลายถึงยุคไทรแอสซิกตอนต้น ตลอดทั้งมหาสมุทร Tethys และ Panthalassic ส่วนใหญ่มีหลักฐานเกี่ยวกับ anoxia รวมถึงการเคลือบผิวในตะกอนไพไรต์ framboids ขนาดเล็ก อัตราส่วนยูเรเนียม/ทอเรียมสูง และเครื่องหมายทางชีวภาพสำหรับแบคทีเรียกำมะถันสีเขียว ปรากฏในเหตุการณ์การสูญพันธุ์[115] อย่างไรก็ตามในบางพื้นที่รวมถึง เหมยซานในประเทศจีน และกรีนแลนด์ตะวันออก มีหลักฐานการเกิด anoxia ก่อนการสูญพันธุ์[116][117] ตัวบ่งชี้ทางชีวภาพสำหรับแบคทีเรียกำมะถันสีเขียว เช่น isorenieratane ซึ่งเป็นผลิตภัณฑ์จากกระบวนการก่อตัวใหม่ของ isorenieratene ถูกใช้กันอย่างแพร่หลายเป็นตัวบ่งชี้ของการเกิด euxinia ในเขตมีแสง เนื่องจากแบคทีเรียกำมะถันสีเขียวต้องการทั้งแสงแดดและไฮโดรเจนซัลไฟด์เพื่อความอยู่รอด การพบอยู่จำนวนมากในตะกอนจากขอบเขต P-T บ่งชี้ว่ามีไฮโดรเจนซัลไฟด์อยู่แม้ในน้ำตื้น

การแพร่กระจายของน้ำที่เป็นพิษและไม่มีออกซิเจนนี้จะส่งผลเสียต่อสิ่งมีชีวิตในทะเล ทำให้เกิดการตายอย่างกว้างขวาง แบบจำลองของเคมีในมหาสมุทรชี้ให้เห็นว่าการเกิด anoxia และ euxinia มีความสัมพันธ์อย่างใกล้ชิดกับ hypercapnia (มีคาร์บอนไดออกไซด์สูง) สิ่งนี้ชี้ให้เห็นว่าพิษจากไฮโดรเจนซัลไฟด์ การเกิด anoxia และ hypercapnia ทำหน้าที่ร่วมกันเป็นกลไกในการฆ่า Hypercapnia อธิบายการสูญพันธุ์ของแต่ละสปีชีส์ได้ดีที่สุด แต่ภาวะ anoxia และ euxinia อาจมีส่วนทำให้เหตุการณ์นี้มีการตายจำนวนมาก การคงอยู่ของ anoxia ในช่วงต้นของไทรแอสซิกอาจอธิบายถึงการฟื้นตัวอย่างช้า ๆ ของสิ่งมีชีวิตในทะเลหลังการสูญพันธุ์ แบบจำลองยังแสดงให้เห็นว่าเหตุการณ์ anoxic ทำให้เกิดภัยพิบัติการปล่อยไฮโดรเจนซัลไฟด์สู่ชั้นบรรยากาศ[118]

ลำดับเหตุการณ์ที่นำไปสู่การเกิด anoxic ในมหาสมุทรอาจถูกกระตุ้นโดยการปล่อยแก๊สคาร์บอนไดออกไซด์จากการระเบิดของไซบีเรียนแทรป[118] ในสถานการณ์นั้น ความร้อนจากปรากฏการณ์เรือนกระจกที่เพิ่มขึ้นจะลดความสามารถในการละลายของออกซิเจนในน้ำทะเล ทำให้ความเข้มข้นของออกซิเจนลดลง การผุกร่อนของทวีปที่เพิ่มขึ้นเนื่องจากความร้อนและการเร่งความเร็วของวัฏจักรน้ำ จะเพิ่มการไหลของฟอสเฟตจากแม่น้ำสู่มหาสมุทร ฟอสเฟตจะช่วยเพิ่มผลผลิตในพื้นผิวมหาสมุทร การเพิ่มขึ้นของการผลิตสารอินทรีย์จะทำให้สารอินทรีย์จมลงสู่มหาสมุทรลึกมากขึ้น ซึ่งการหายใจของมันจะลดความเข้มข้นของออกซิเจนลงไปอีก เมื่อเกิดภาวะ anoxia แล้วก็จะได้รับการตอบรับอย่างต่อเนื่อง เนื่องจากภาวะ anoxia ในน้ำลึกมีแนวโน้มที่จะเพิ่มประสิทธิภาพในการนำฟอสเฟตมาใช้ใหม่ซึ่งนำไปสู่ผลผลิตที่สูงขึ้น

การปล่อยแก๊สไฮโดรเจนซัลไฟด์

เหตุการณ์ anoxic ที่รุนแรงในตอนท้ายของยุคเพอร์เมียนจะทำให้แบคทีเรียลดซัลเฟตเจริญเติบโตได้ดี ทำให้เกิดไฮโดรเจนซัลไฟด์จำนวนมากในมหาสมุทร การแช่อยู่ในน้ำนี้อาจปล่อยแก๊สไฮโดรเจนซัลไฟด์จำนวนมากสู่ชั้นบรรยากาศ ซึ่งเป็นพิษต่อพืชและสัตว์บนบก และทำให้ชั้นโอโซนลดลงอย่างรุนแรง ทำให้ชีวิตที่เหลืออยู่ส่วนใหญ่เจอกับรังสี UV ระดับร้ายแรง[119] อันที่จริงแล้ว หลักฐานทางชีวภาพสำหรับการสังเคราะห์ด้วยแสงแบบไม่ใช้ออกซิเจนโดย Chlorobiaceae (แบคทีเรียกำมะถันสีเขียว) จากยุคเพอร์เมียนตอนปลายไปสู่ไทรแอสซิบตอนต้น ่งชี้ว่าไฮโดรเจนซัลไฟด์อยู่ในน้ำตื้นได้ดีเนื่องจากแบคทีเรียเหล่านี้ถูก ำกัด ว้ทในเขตมีลสงแใช้ซัลไฟด์เป็นผู้บริจาคอิเล็กตรอน

สมมติฐานนี้สามารถอธิบายการสูญพันธุ์ของพืชจำนวนมาก ซึ่งเพิ่มระดับแก๊สมีเทนและควรเจริญเติบโตในบรรยากาศที่มีแก๊สคาร์บอนไดออกไซด์สูง ฟอสซิลสปอร์จากปลายเพอร์เมียนสนับสนุนทฤษฎีนี้[120] ซึ่งพบความผิดปกติที่อาจเกิดจากรังสีอัลตราไวโอเลต ซึ่งมีจำนวนมากขึ้นหลังจากการปล่อยแก๊สไฮโดรเจนซัลไฟด์ทำให้ชั้นโอโซนลดลง

ใกล้เคียง

เหตุการณ์ 6 ตุลา เหตุการณ์ 14 ตุลา เหตุกราดยิงที่จังหวัดนครราชสีมา พ.ศ. 2563 เหตุการณ์การสูญพันธุ์ยุคเพอร์เมียน–ไทรแอสซิก เหตุการณ์พายุหมุนนาร์กิส พ.ศ. 2551 เหตุการณ์รถตู้สาธารณะถูกชนบนทางยกระดับอุตราภิมุข พ.ศ. 2553 เหตุกราดยิงที่สยามพารากอน เหตุการณ์ นปช. ปะทะกับกลุ่มพันธมิตรฯ 2 กันยายน พ.ศ. 2551 เหตุการณ์ทุจริตการออกรางวัลสลากกินแบ่งรัฐบาล พ.ศ. 2544 เหตุการณ์โกก้าง

แหล่งที่มา

WikiPedia: เหตุการณ์การสูญพันธุ์ยุคเพอร์เมียน–ไทรแอสซิก http://www.news.uwa.ea.au/201307315921/internation... http://hoopermuseum.earthsci.carleton.ca/pt_bounda... http://www.britannica.com/science/Permian-extincti... http://gsa.confex.com/gsa/2001ESP/finalprogram/abs... http://news.nationalgeographic.com/news/2011/11/11... http://www.scientificamerican.com/article/giant-er... http://content.usatoday.com/communities/sciencefai... http://newsoffice.mit.edu/2014/ancient-whodunit-ma... //citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1... //citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1...