คำอธิบาย ของ กระแสฟูโก

กระแสวน (I, red) ถูกเหนี่ยวนำขึ้นในแผ่นโลหะตัวนำ (C) เมื่อแผ่นโลหะเคลื่อนที่ไปทางขวาใต้แม่เหล็ก (N) สนามแม่เหล็ก (B, green) จะชี้ลงผ่านแผ่นโลหะ สนามที่เพิ่มขึ้นที่ขอบนำ (อังกฤษ: leading edge) ของแม่เหล็ก (ซ้าย) จะเหนี่ยวนำกระแสให้ไหลทวนเข็มนาฬิกา, ซึ่งโดย กฏของเลนซ์ จะสร้างสนามแม่เหล็กของตัวมันเอง (left blue arrow) ชี้ขึ้นข้างบน, ซึ่งต้านกับสนามของแม่เหล็ก, เป็นการสร้างแรงหน่วง ในทำนองเดียวกัน ที่ขอบท้าย (อังกฤษ: trailing edge) ของแม่เหล็ก (ขวา), กระแสจะไหลตามเข็มนาฬิกาและสนามต้านจะชี้ลงล่างจะถูกสร้างขึ้น (right blue arrow) ซึ่งเป็นการสร้างแรงหน่วงเช่นกันการเบรกด้วยกระแสวน

แม่เหล็กจะเหนี่ยวนำให้เกิดกระแสเป็นวงกลมบนแผ่นโลหะที่กำลังเคลื่อนที่ผ่านตัวมัน ดูแผนภาพที่ด้านขวา มันแสดงให้เห็นแผ่นโลหะ (C) ที่กำลังเคลื่อนที่ไปทางขวาใต้แม่เหล็กที่ติดอยู่กับที่ สนามแม่เหล็ก (B, green arrows) ของขั้วเหนือ N ของแม่เหล็กจะผ่านลงทะลุแผ่นโลหะ เนื่องจากแผ่นโลหะกำลังเคลื่อนที่ ฟลักซ์แม่เหล็ก ที่ผ่านแผ่นโลหะจะมีการเปลี่ยนแปลง ที่ส่วนของแผ่นภายใต้ขอบนำของแม่เหล็ก (ด้านซ้าย) สนามแม่เหล็กที่ผ่านแผ่นจะเพิ่มขึ้นเมื่อมันเข้าใกล้แม่เหล็กมากขึ้น d B d t > 0 {\displaystyle \scriptstyle {dB \over dt}\;>\;0} จาก กฎของการเหนี่ยวนำของฟาราเดย์ สิ่งนี้จะสร้าง สนามไฟฟ้า เป็นรูปวงกลมในแผ่นโลหะในทิศทางทวนเข็มนาฬิการอบเส้นสนามแม่เหล็ก สนามไฟฟ้านี้จะก่อให้เกิดการไหลของกระแสไฟฟ้า (I, red) ในทิศทางทวนเข็มนาฬิกาในแผ่นโลหะ นี่คือกระแสวน ที่ขอบตามของแม่เหล็ก (ด้านขวา) สนามแม่เหล็กที่ผ่านแผ่นจะลดลง d B d t < 0 {\displaystyle \scriptstyle {dB \over dt}\;<\;0} เป็นการเหนี่ยวนำให้เกิดกระแสวนวงที่สองในทิศทางตามเข็มนาฬิกาในแผ่นโลหะ

อีกวิธีหนึ่งที่จะเข้าใจในกระแสก็คือการที่จะเห็นว่า พาหะของประจุไฟฟ้า อิสระ (อิเล็กตรอน) ในแผ่นโลหะกำลังจะย้ายไปทางขวา ดังนั้นสนามแม่เหล็กจะออกแรงด้านข้างกับอิเล็กตรอนเนื่องจาก แรงลอเรนซ์ เนื่องจากความเร็ว v ของประจุไปทางขวาและสนามแม่เหล็ก B ชี้ลงด้านล่าง จาก กฎมือข้างขวา แรงลอเรนซ์บนประจุบวก F = Q(v × B) ไปทางด้านหลัง นี้ทำให้เกิดกระแส I ไปทางด้านหลังใต้แม่เหล็กซึ่งเป็นวงรอบผ่านส่วนของแผ่นนอกสนามแม่เหล็ก ตามเข็มนาฬิกาไปทางขวาและทวนเข็มนาฬิกาไปทางซ้าย ไปด้านหน้าของแม่เหล็กอีกครั้ง พาหะของประจุไฟฟ้า ที่เคลื่อนที่ได้ในแผ่นโลหะ, อิเล็กตรอน, จริง ๆ แล้วมีประจุลบ (q < 0) ดังนั้นการเคลื่อนไหวของอิเล็กตรอนจะไปในทิศทางตรงข้ามกับ กระแสตามความธรรมเนียมปฏิบัติ (อังกฤษ: conventional current) ตามที่แสดง

เนื่องจาก กฎวงจรของแอมแปร์ แต่ละกระแสรูปวงกลมเหล่านี้จะสร้างสนามแม่เหล็กที่มีทิศทางตรงกันข้าม (blue arrows) ซึ่งเนื่องจาก กฎของเลนซ์ สนามนี้จะต่อต้านการเปลี่ยนแปลงในสนามแม่เหล็กที่สร้างมันขึ้นมา เป็นการสร้างแรงหน่วงขึ้นบนแผ่น. ที่ขอบนำของแม่เหล็ก (ด้านซ้าย) กระแสทวนเข็มนาฬิกาจะสร้างสนามแม่เหล็กที่ชี้ขึ้นข้างบนโดย กฎมือขวา ต้านกับสนามของแม่เหล็ก ก่อให้เกิดแรงผลักระหว่างแผ่นและขอบนำของแม่เหล็ก ในทางตรงกันข้าม ที่ขอบท้าย (ด้านขวา), กระแสตามเข็มนาฬิกาจะทำให้เกิดสนามแม่เหล็กที่ชี้ลงข้างล่างในทิศทางเดียวกับสนามของแม่เหล็ก ช่วยสร้างแรงดึงดูดระหว่างแผ่นและขอบท้ายของแม่เหล็ก ทั้งสองแรงเหล่านี้จะต่อต้านการเคลื่อนที่ของแผ่น แต่ พลังงานจลน์ ของแผ่นจะสามารถเอาชนะแรงหน่วงนี้ กระแสวนที่ไหลผ่าน ความต้านทาน ของโลหะทำให้เกิดความร้อน ดังนั้นแผ่นโลหะจะอุ่นขึ้นภายใต้แม่เหล็ก

กระแสวนในตัวนำไฟฟ้าที่มี ความต้านทาน ไม่เท่ากับศูนย์จะสร้างความร้อนได้รวมทั้งแรงแม่เหล็กไฟฟ้า ความร้อนดังกล่าวสามารถนำไปใช้เป็น ความร้อนเหนี่ยวนำ แรงแม่เหล็กไฟฟ้าก็สามารถนำไปใช้สำหรับการยก, การสร้างการเคลื่อนไหว, หรือสร้างแรง เบรก ให้แข็งแกร่ง กระแสวนยังสามารถสร้างผลกระทบที่ไม่พึงประสงค์ เช่นการสูญเสียกำลังใน หม้อแปลง ในการนำไปประยุกต์ใช้ลักษณะนี้กระแสวนสามารถถูกทำให้น้อยลงได้ด้วยแผ่นบาง ๆ หรือโดยการเคลือบตัวนำหรือใช้ตัวนำที่มีรูปร่างอื่น

กระแสวนสามารถเกิดขึ้นเองได้ และมันจะสร้าง skin effect ขึ้นในตัวนำไฟฟ้า [2] skin effect สามารถใช้สำหรับการทดสอบแบบไม่ทำลายของวัสดุเพื่อหาคุณลักษณะของรูปทรงเรขาคณิต เช่นรอยแตกขนาดเล็ก[3] ผลกระทบจากกระแสวนที่คล้ายกันก็คือ proximity effect, ซึ่งเกิดจากกระแสวนที่มีการเหนี่ยวนำจากภายนอก[4]

วัตถุหรือส่วนหนึ่งของวัตถุอาจประสบกับความรุนแรงและทิศทางของสนามอย่างต่อเนื่องในบริเวณที่ยังคงมีการเคลื่อนไหวสัมพันธ์ของสนามและวัตถุ (เช่นอยู่ในใจกลางของสนามในแผนภาพ) หรือสนามที่ไม่ต่อเนื่องในบริเวณที่กระแสไม่สามารถไหลเวียนได้เนื่องจากการเป็นรูปทรงเรขาคณิตของตัวนำ ในสถานการณ์เหล่านี้ประจุไฟฟ้าจะสะสมบนหรือภายในวัตถุจากนั้นประจุเหล่านี้จะผลิตศักย์ไฟฟ้าสถิตที่ต่อต้านกระแสที่เกิดเพิ่มเติมใด ๆ ในตอนแรกกระแสอาจจะมาพร้อมกับการสร้างศักย์ไฟฟ้าสถิต แต่กระแสเหล่านี้อาจจะชั่วคราวและมีขนาดเล็ก

(ซ้าย) กระแสวน (I, red) ภายในแกนกลางเหล็กแข็งของหม้อแปลง (ขวา) แกนกลางทำด้วยเหล็กบางเคลือบขนานกับสนาม (B, green) ด้วยฉนวนระหว่างเหล็กบางเคลือบสามารถช่วยลดกระแสวนลงได้ ถึงแม้ว่าสนามและกระแสได้แสดงในทิศทางเดียว จริง ๆ แล้วพวกมันก็ยังมีทิศทางกลับกันกับกระแสสลับในขดลวดของหม้อแปลง

กระแสวนสร้างความสูญเสียจากความต้านทาน (อังกฤษ: resistive loss) ที่สามารถเปลี่ยนบางรูปแบบของพลังงานได้ เช่นเปลี่ยนพลังงานจลน์ให้เป็นพลังงานความร้อนที่เรียกว่า ความร้อนของจูล ความร้อนนี้จะลดประสิทธิภาพของหม้อแปลงที่มีแกนกลางเป็นเหล็กและ มอเตอร์ไฟฟ้า และอุปกรณ์อื่น ๆ ที่ใช้การเปลี่ยนแปลงของสนามแม่เหล็ก กระแสวนจะลดลงได้ในอุปกรณ์เหล่านี้โดยเลือกวัสดุ แกนแม่เหล็ก ที่มีการนำไฟฟ้าต่ำ (เช่น เฟอร์ไรท์) หรือโดยการใช้แผ่นบาง ๆ ของวัสดุแม่เหล็กที่เรียกว่า laminations[note 1] อิเล็กตรอนจะไม่สามารถข้ามช่องว่างระหว่างฉนวนของวัสดุเคลือบและก็ไม่สามารถที่จะไหลเวียนในส่วนโค้งกว้าง ประจุจะสะสมกันที่ขอบของวัสดุเคลือบในขั้นตอนที่คล้ายกับ Hall Effect ที่ผลิตสนามไฟฟ้าที่ต่อต้านการสะสมเพิ่มเติมใด ๆ ของประจุ และด้วยเหตุนี้กระแสวนจึงถูกปราบปราม ระยะห่างระหว่างวัสดุเคลือบที่อยู่ติดกันยิ่งใกล้เท่าไร (เช่นจำนวนของวัสดุเคลือบต่อหน่วยพื้นที่ตั้งฉากกับสนามที่จ่ายให้ยิ่งมากเท่าไร) การปราบปรามของกระแสวนยิ่งทำได้มากเท่านั้น

อย่างไรก็ตาม การแปลงพลังงานอินพุทให้เป็นความร้อนไม่ได้เป็นที่พึงประสงค์เสมอไป อย่างที่มีการนำไปใช้กับงานจริงบางงาน งานหนึ่งในนั้นคือการนำไปใช้เป็นเบรกของรถไฟบางขบวนที่เรียกว่า เบรกด้วยกระแสวน ระหว่างการเบรก, ล้อโลหะจะต้านกับสนามแม่เหล็กจากแม่เหล็กไฟฟ้า, เป็นการสร้างกระแสวนในวงล้อ กระแสวนนี้ก่อตัวขึ้นจากการเคลื่อนไหวของล้อ ดังนั้น ตามกฎของเลนซ์ สนามแม่เหล็กที่เกิดขึ้นจากกระแสวนจะต่อต้านกับสนามที่สร้างมันขี้นมา ดังนั้นล้อจะเผชิญกับแรงต่อต้านการเคลื่อนไหวเริ่มต้นของวงล้อ ยิ่งล้อหมุนเร็วเท่าไร ผลกระทบจะยิ่งแรงขึ้น หมายความว่าในขณะที่รถไฟวิ่งช้าลง แรงเบรกก็จะลดลงด้วย เป็นการสร้างการหยุดที่นิ่มนวล

ความร้อนจากการเหนี่ยวนำ เป็นการใช้กระแสวนเพื่อให้ความร้อนกับวัตถุที่เป็นโลหะ

กระจายพลังงานของกระแสวน

ภายใต้สมมติฐานบางอย่าง (วัสดุสม่ำเสมอ, สนามแม่เหล็กสม่ำเสมอ, ไม่มี skin effect, ฯลฯ ) พลังงานจะสูญเสียไปเนื่องจากกระแสวนต่อหน่วยมวลสำหรับแผ่นโลหะบางหรือลวด สามารถคำนวณได้จากสมการต่อไปนี้: [5]

P = π 2 B p 2 d 2 f 2 6 k ρ D , {\displaystyle P={\frac {\pi ^{2}B_{\text{p}}^{\,2}d^{2}f^{2}}{6k\rho D}},}

เมื่อ

P เป็นพลังงานที่เสียไปต่อหน่วยมวล (W/kg)Bp เป็นสนามแม่เหล็กสูงสุด (T)d เป็นความหนาของแผ่นหรือเส้นผ่าศูนย์กลางของเส้นลวด (M),f เป็นความถี่ (Hz)k เป็นค่าคงที่เท่ากับ 1 สำหรับแผ่นบางและ 2 สำหรับลวดบาง,ρ เป็นค่า resistivity ของวัสดุ (Ω m) และD เป็น ความหนาแน่น ของวัสดุ (กิโลกรัม/เมตร3)

สมการนี้จะใช้ได้เฉพาะภายใต้สิ่งที่เรียกว่าสภาพกึ่งคงที่, เมื่อความถี่ของ magnetisation ไม่ได้ส่งผลให้เกิด skin effect; นั่นคือ คลื่นแม่เหล็กไฟฟ้าจะแทรกซึมวัสดุอย่างเต็มที่

ผลกระทบที่ผิว

บทความหลัก: ผลกระทบที่ผิว

ในสนามที่มีการเปลี่ยนแปลงอย่างรวดเร็ว (หรือที่ความถี่สูง) สนามแม่เหล็กไม่ได้เจาะลึกอย่างสมบูรณ์เข้าไปภายในวัสดุ ปรากฏการณ์นี้เรียกว่า ผลกระทบที่ผิว (อังกฤษ: skin effect) มันส่งผลให้สมการข้างบนใช้ไม่ได้ อย่างไรก็ตาม ในกรณีที่การเพิ่มความถี่ให้เท่ากับความถี่ของสนามจะเพิ่มกระแสวนเสมอ แม้ว่าจะเป็นการเจาะลึกของสนามแบบไม่สม่ำเสมอก็ตาม[ต้องการอ้างอิง]

ความลึกในการเจาะสำหรับตัวนำที่ดีสามารถคำนวนได้จากสมการตอไปนี้[6]

δ = 1 π f μ σ , {\displaystyle \delta ={\frac {1}{\sqrt {\pi f\mu \sigma }}},}

เมื่อ δ เป็นความลึกในการเจาะ (m), f เป็นความถี่ (Hz), μ เป็น ความสามารถในการซึมผ่านแม่เหล็ก ของวัสดุ (H/m), และ σ เป็น ความสามารถในการนำไฟฟ้า ของวัสดุ (S/m).

แหล่งที่มา

WikiPedia: กระแสฟูโก http://people.mech.kuleuven.be/~jwang/paper/ferrar... http://www.baumerhuebner.com/pdf/ferraris_accelera... http://www.cogelme.com/eng/e-eddy-current-metal-se... http://www.fischer-technology.com/en/us/coating-th... http://books.google.com/books?id=E8caSplsF28C&pg=P... http://books.google.com/books?id=ZvscLzOlkNgC&pg=P... http://books.google.com/books?id=mMJxcWqm_1oC&pg=P... http://books.google.com/books?id=6w5TAAAAMAAJ&q=fo... http://headrushtech.com/trublue-auto-belay/ http://headrushtech.com/zipstop-zip-line-brake