ประเภท ของ กล้องจุลทรรศน์อิเล็กตรอน

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านที่ทันสมัย

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM)

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) เป็นรูปแบบเดิมของกล้องจุลทรรศน์อิเล็กตรอน มันใช้ลำแสงอิเล็กตรอนไฟฟ้าแรงสูงในการสร้างภาพ ลำแสงอิเล็กตรอนถูกผลิตโดยปืนอิเล็กตรอนที่ทั่วไปแล้วได้ติดตั้งแคโทดที่มีไส้หลอดเป็นทังสเตนเพื่อเป็นแหล่งที่มาของอิเล็กตรอน ลำแสงอิเล็กตรอนถูกเร่งความเร็วโดยขั้วบวกปกติที่ 100 กิโลอิเล็กตรอนโวลท์ (kev) (40-400 kev) เมื่อเทียบกับแคโทด จากนั้นลำแสงจะถูกโฟกัสโดยเลนส์ไฟฟ้าสถิตและคลื่นแม่เหล็กไฟฟ้าและส่องผ่านชิ้นงานที่มีบางส่วนที่โปร่งใสกับอิเล็กตรอนและบางส่วนกระจายลำแสงออกไป เมื่อลำแสงอิเล็กตรอนผ่านพ้นออกมาจากชิ้นงานมันจะเก็บข้อมูลเกี่ยวกับโครงสร้างของชิ้นงานออกมาด้วยซึ่งจะมีการขยายโดยระบบเลนส์ใกล้วัตถุ (อังกฤษ: objective lens) ของกล้องจุลทรรศน์นั้น การเปลี่ยนแปลงเชิงพื้นที่ในข้อมูลนี้ ("ภาพ") อาจสามารถดูได้โดยการฉายภาพอิเล็กตรอนที่ถูกขยายแล้วนี้ลงบนหน้าจอดูเรืองแสงที่เคลือบด้วยวัสดุสารเรืองแสงหรือ scintillator เช่นสังกะสีซัลไฟด์ หรืออีกทางเลือกหนึ่งภาพสามารถถูกบันทึกได้แบบการถ่ายรูปโดยการฉายแสงอิเล็กตรอนโดยตรงลงบนแผ่นฟิล์มถ่ายรูป หรือสารเรืองแสงความละเอียดสูงอาจต่อเข้ากับตัวรับแสงของกล้องถ่ายรูปที่ใช้ CCD (อุปกรณ์ถ่ายเทประจุ) ด้วยระบบเลนส์ออปติคอลหรือตัวนำแสงแบบใยแก้ว ภาพที่จับได้โดย CCD อาจจะแสดงบนหน้าจอคอมพิวเตอร์

ความละเอียดของ TEM ถูกจำกัดเป็นส่วนใหญ่โดยความผิดปกติแบบทรงกลม (อังกฤษ: spherical aberration) (การหักเหของแสงตามขอบเลนส์) แต่รุ่นใหม่ของตัวแก้ความผิดปกติสามารถเอาชนะการผิดปกติแบบทรงกลมเหล่านั้นได้เพื่อเพิ่มความละเอียด การแก้ไขด้วยฮาร์ดแวร์ของความผิดปกติแบบทรงกลมสำหรับกล้องจุลทรรศน์อิเล็กตรอนความละเอียดสูงแบบส่องผ่าน (อังกฤษ: high-resolution transmission electron microscopy (HRTEM)) สามารถผลิตภาพที่มีความละเอียดต่ำกว่า 0.5 อังสตรอม (50 picometres)[1] และกำลังขยายสูงกว่า 50 ล้านเท่า[9] ความสามารถในการกำหนดตำแหน่งของอะตอมภายในวัสดุได้ทำให้ HRTEM เป็นเครื่องมือสำคัญสำหรับการวิจัยและการพัฒนาด้านนาโนเทคโนโลยี[10]

โหมดที่สำคัญของการใช้ TEM คือการเลี้ยวเบนของอิเล็กตรอน (อังกฤษ: electron diffraction) ข้อดีของการเลี้ยวเบนของอิเล็กตรอนที่เหนือกว่าเทคนิคของผลึกวิทยา (อังกฤษ: X-ray crystallography) อยู่ที่ชิ้นงานไม่จำเป็นต้องเป็นผลึกเดี่ยวหรือแม้กระทั่งเป็นผงผลึก (อังกฤษ: polycrystalline powder) และนอกจากนี้การฟื้นฟูโครงสร้างด้วยการแปลงแบบฟูริเยร์ (อังกฤษ: Fourier transform reconstruction) ของโครงสร้างที่ถูกขยายแล้วของวัตถุจะเกิดขึ้นทางกายภาพ จึงหลีกเลี่ยงความจำเป็นสำหรับการแก้ปัญหาแบบเฟส (อังกฤษ: phase problem) ที่ต้องเผชิญกับ X-ray crystallographers หลังจากได้รับรูปแบบ X-ray diffraction ของผลึกเดี่ยวหรือผงผลึกของพวกมัน ข้อเสียที่สำคัญของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านคือความจำเป็นสำหรับตัวอย่างที่ต้องใช้ส่วนที่บางมากโดยทั่วไปประมาณ 100 นาโนเมตร ตัวอย่างทางชีวภาพโดยทั่วไปจะต้องคงที่ทางเคมี แห้งและถูกฝังตัวอยู่ในเรซินลิเมอร์เพื่อรักษาเสถียรภาพของพวกมันให้พอที่จะยอมให้ตัดเซ็กชั่นอย่างบางเฉียบได้ เซ็กชั่นของตัวอย่างทางชีวภาพ โพลิเมอร์อินทรีย์และวัสดุที่คล้ายกันอาจจะต้องการการดูแลเป็นพิเศษด้วยป้ายชื่ออะตอมหนักเพื่อให้ได้ความคมชัดของภาพตามที่ต้องการ

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM)

ภาพของมดในกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

ไม่เหมือนกับแบบ TEM ที่อิเล็กตรอนของลำแสงไฟฟ้าแรงสูงจะเก็บภาพของชิ้นงาน, ลำแสงอิเล็กตรอนของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM)[11] ไม่ได้เก็บภาพที่สมบูรณ์ของชิ้นงานได้ตลอดเวลา SEM จะผลิตภาพโดยตรวจสอบชิ้นงานโดยใช้ลำแสงอิเล็กตรอนที่โฟกัสให้กราด(สแกน)ไปทั่วพื้นที่สี่เหลี่ยมของชิ้นงาน (เหมือนการสแกนจอภาพ CRT (อังกฤษ: raster scan)) เมื่อลำแสงอิเล็กตรอนมีปฏิสัมพันธ์กับชิ้นงาน มันจะสูญเสียพลังงานตามความหลากหลายของกลไก พลังงานที่หายไปจะถูกแปลงเป็นรูปแบบทางเลือกอื่นเช่นความร้อน การปล่อยอิเล็กตรอนทุติยภูมิพลังงานต่ำและอิเล็กตรอนสะท้อนกลับพลังงานสูง การปล่อยแสง (cathodoluminescence) หรือการเปล่งรังสีเอกซ์ พลังงานทั้งหมดเหล่านี้เป็นสัญญาณของข้อมูลเกี่ยวกับคุณสมบัติของพื้นผิวของชิ้นงาน เช่นรูปร่างและองค์ประกอบของมัน ภาพที่แสดงโดย SEM จะแปลความเข้มที่แตกต่างใดๆของสัญญาณเหล่านี้ให้เป็นภาพที่อยู่ในตำแหน่งที่สอดคล้องกับตำแหน่งของลำแสงบนชิ้นงานตอนที่สัญญาณถูกสร้างขึ้น ในภาพ SEM ของมดที่แสดงทางด้านขวา ภาพถูกสร้างขึ้นมาจากสัญญาณที่ผลิตโดยเครื่องตรวจจับอิเล็กตรอนทุติยภูมิซึ่งเป็นโหมดการสร้างภาพปกติหรือทั่วไปใน SEMs ส่วนใหญ่

โดยทั่วไปความละเอียดของภาพจาก SEM มีความคมชัดด้อยกว่าของ TEM อย่างไรก็ตามเนื่องจากภาพ SEM เป็นกระบวนการที่เกิดบนพื้นผิวมากกว่าการส่องผ่าน มันจึงสามารถที่จะสร้างภาพตัวอย่างที่เป็นกลุ่มได้ในขนาดหลายเซนติเมตรขึ้นไปและ (ขึ้นอยู่กับการออกแบบและการตั้งค่าของเครื่องมือ) มีความลึกของสนามที่สูง ดังนั้นมันจึงสามารถผลิตภาพที่มีการแสดงที่ดีของรูปทรงสามมิติของกลุ่มตัวอย่าง ประโยชน์ของ SEM อีกประการหนึ่งคือความหลากหลายของมันที่เรียกว่ากล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดสิ่งแวดล้อม (อังกฤษ: environmental scanning electron microscope (Esem)) ที่สามารถผลิตภาพที่มีคุณภาพและความละเอียดเพียงพอสำหรับกลุ่มตัวอย่างที่เปียกหรือถูกเก็บอยู่ในสูญญากาศหรือก๊าซต่ำ อุปกรณ์นี้จะช่วยอำนวยความสะดวกในการถ่ายภาพตัวอย่างทางชีวภาพที่มีความไม่แน่นอนในสูญญากาศสูงของกล้องจุลทรรศน์อิเล็กตรอนแบบเดิม

สี

ในคอนฟิกูเลชั่นที่พบมากที่สุดของพวกมันกล้องจุลทรรศน์อิเล็กตรอนผลิตภาพที่มีค่าความสว่างเดียวต่อพิกเซลโดยผลลัพธ์ที่ได้แสดงผลมักจะอยู่ในระดับสีเทา[12] อย่างไรก็ตามบ่อยครั้งที่ภาพเหล่านี้จะทำเป็นสีโดยใช้ซอฟแวร์ที่มีการตรวจสอบคุณลักษณะหรือง่ายๆเพียงแค่ใช้มือด้วยโปรแกรมแก้ไขภาพกราฟิก วิธีนี้มักจะทำเพื่อความสวยงามหรือสำหรับการอธิบายโครงสร้างและโดยทั่วไปก็ไม่ได้เพิ่มข้อมูลใดๆเกี่ยวกับตัวอย่าง[13]

ในบางคอนฟิกูเลชั่นข้อมูลเพิ่มเติมเกี่ยวกับคุณสมบัติของชิ้นงานถูกรวบรวมต่อพิกเซล ปกติโดยการใช้เครื่องตรวจจับหลายชั้น[14] ใน SEM คุณลักษณะของรูปร่างและความคมชัดแบบวัสดุสามารถสร้างภาพได้โดยใช้เครื่องตรวจจับอิเล็กตรอนสะท้อนกลับหนึ่งคู่และคุณลักษณะดังกล่าวสามารถซ้อนทับในภาพสีภาพเดียวโดยการกำหนดสีหลักที่แตกต่างกันไปแต่ละคุณลักษณะ[15] ในทำนองเดียวกันการรวมกันของสัญญาณอิเล็กตรอนสะท้อนกลับและทุติยภูมิสามารถกำหนดให้มีสีที่แตกต่างกันและซ้อนทับกันบน Micrograph สีเดียวที่แสดงคุณสมบัติของชิ้นงานพร้อมกัน[16]

ในวิธีการที่คล้ายกัน อิเล็กตรอนทุติยภูมิและเครื่องตรวจจับอิเล็กตรอนสะท้อนกลับมีการซ้อนทับกันและสีหนึ่งได้ถูกกำหนดให้ในแต่ละภาพที่จับได้โดยแต่ละเครื่องตรวจจับ ทำให้ได้ผลในตอนท้ายเป็นภาพสีผสมที่สีทั้งหลายมีความสัมพันธ์กับความหนาแน่นของส่วนประกอบต่างๆ วิธีการนี้เป็นที่รู้จักกันว่าเป็น SEM แบบมีสีที่ขึ้นอยู่กับความหนาแน่น (อังกฤษ: Density-dependent colour SEM (DDC-SEM)) ภาพ micrograph ที่ผลิตโดย DDC-SEM จะเก็บข้อมูลรูปร่าง(ซึ่งถูกจับได้ดีกว่าที่จับได้โดยต้วตรวจจับอิเล็กตรอนทุติยภูมิและผสมเข้าด้วยกันกับข้อมูลเกี่ยวกับความหนาแน่น)ที่ได้รับจากเครื่องตรวจจับอิเล็กตรอนสะท้อนกลับ[17]

ภาพจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดแบบมีสีที่ขึ้นอยู่กับความหนาแน่น (DDC-SEM) ของแคลเซียมในหลอดเลือดหัวใจที่แสดงในสีส้มเป็นอนุภาคทรงกลมของแคลเซียมฟอสเฟต (วัสดุทึบแสงกว่า) และในสีเขียวแสดงเป็น extracellular matrix (วัสดุหนาแน่นน้อยกว่า)[17]

บางชนิดของตัวตรวจจับที่ใช้ใน SEM มีความสามารถในการวิเคราะห์และสามารถให้ข้อมูลหลายรายการในแต่ละพิกเซล ตัวอย่างเช่นตัวตรวจจับในเครื่องเอกซ์เรย์สเปกโตรสโคปีแบบพลังงานกระจาย (อังกฤษ: Energy-dispersive X-ray spectroscopy (EDS)) ที่ใช้ในการวิเคราะห์ธาตุและระบบกล้องจุลทรรศน์แบบเปล่งแสงด้วยคาโทด (อังกฤษ: Cathodoluminescence microscope (CL)) ที่วิเคราะห์ความเข้มข้นและสเปกตรัมของการเปล่งแสงที่เกิดขึ้นจากอิเล็กตรอน (อังกฤษ: electron-induced luminescence) ใน (ตัวอย่างเช่น) ชิ้นตัวอย่างทางธรณีวิทยา ในระบบ SEM การใช้ตัวตรวจจับเหล่านี้มันเป็นเรื่องธรรมดาที่จะให้รหัสสีกับสัญญาณทั้ได้และซ้อนทับพวกมันออกกมาเป็นนภาพสีภาพเดียวเพื่อที่ว่าความแตกต่างทั้งหลายในการกระจายของส่วนประกอบต่างๆของชิ้นงานสามารถมองเห็นได้อย่างชัดเจนและสามารถเทียบกันได้ เพื่อเป็นทางเลือก ภาพอิเล็กตรอนทุติยภูมิมาตรฐานสามารถถูกรวมเข้ากับช่องทางแบบองค์ประกอบ (อังกฤษ: compositional channel) หนึ่งช่องทางหรือมากกว่าเพื่อให้โครงสร้างของชิ้นงานและองค์ประกอบสามารถนำมาเปรียบเทียบกันได้ ภาพดังกล่าวสามารถถูกทำขึ้นในขณะที่มีการรักษาความสมบูรณ์เต็มรูปแบบของสัญญาณเดิมซึ่งไม่ได้ถูกแก้ไขในทางใดทางหนึ่ง

กล้องจุลทรรศน์อิเล็กตรอนแบบสะท้อน (REM)

ในกล้องจุลทรรศน์อิเล็กตรอนแบบสะท้อน (อังกฤษ: Reflection electron microscope (REM)) เช่นเดียวกับใน TEM ลำแสงอิเล็กตรอนตกลงบนพื้นผิว แต่แทนที่จะใช้การส่องผ่าน (ใน TEM) หรืออิเล็กตรอนทุติยภูมิ (ใน SEM) ลำแสงที่สะท้อนของอิเล็กตรอนที่กระจายอย่างยืดหยุ่นจะถูกตรวจพบ เทคนิคนี้จะมักจะเชื่อมต่อเข้ากับการเลี้ยวเบนของอิเล็กตรอนพลังงานสูงสะท้อน (อังกฤษ: reflection high energy electron diffraction (RHEED)) และเครื่องสเปกโทรสโกปีแบบสะท้อนการสูญเสียพลังงานสูง (อังกฤษ: reflection high-energy loss spectroscopy (RHELS)) การแปรเปลี่ยนอีกประการหนึ่งคือกล้องจุลทรรศน์อิเล็กตรอนพลังงานต่ำแบบขั้วหมุน (อังกฤษ: spin-polarized low-energy electron microscopy (SPLEEM)) ซึ่งจะใช้สำหรับการมองหาจุลภาคของโดเมนแม่เหล็ก[18]

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านและส่องกราด (STEM)

บทความหลัก: กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านและส่องกราดเครื่อง STEM นี้จะสแกนลำแสงที่โฟกัสแล้วให้ตกกระทบทั่วชิ้นงาน (เช่นเดียวกับ TEM) ชิ้นงานจะถูกทำให้บางเพื่ออำนวยความสะดวกในการตรวจจับอิเล็กตรอนที่กระจาย"ผ่าน"ชิ้นงานความละเอียดสูงของ TEM จึงสามารถเป็นไปได้ใน STEM การดำเนินการ (และความผิดปรกติ) จากการโฟกัสจะเกิดขึ้นก่อนที่อิเล็กตรอนจะกระทบชิ้นงานใน STEM แต่ใน TEM จะเกิดทีหลัง STEM จะใช้การสแกนลำแสงเหมือนกับ SEM เพื่อลดความยุ่งยากในการถ่ายภาพเป็นรูปวงแหวนสนามมืด (อังกฤษ: annular dark-field imaging) (ซึ่งเป็นเทคนิคการวิเคราะห์อีกอันหนึ่ง) แต่ยังหมายถึงว่าข้อมูลภาพจำเป็นต้องอยู่ในรูปอนุกรมมากกว่าอยู่ในรูปขนาน บ่อยครั้งที่ TEM สามารถถูกติดตั้งด้วยตัวเลือกการสแกน มันจึงสามารถทำงานได้ทั้งแบบ TEM และ STEM

ใกล้เคียง

กล้อง กล้องโทรทรรศน์อวกาศฮับเบิล กล้องจุลทรรศน์อิเล็กตรอน กล้องจุลทรรศน์ กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์ กล้องโทรทรรศน์ซูบารุ กล้องโทรทรรศน์ กล้องไร้กระจก กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ กล้องโทรทรรศน์อวกาศเคปเลอร์

แหล่งที่มา

WikiPedia: กล้องจุลทรรศน์อิเล็กตรอน http://www.dannen.com/budatalk.html http://linkinghub.elsevier.com/retrieve/pii/S01406... http://www.fei.com/uploadedfiles/documents/content... http://books.google.com/books?id=30A5AAAAIAAJ&pg=P... http://adsabs.harvard.edu/abs/1984Natur.308...32A http://adsabs.harvard.edu/abs/2009PhRvL.102i6101E http://web.mit.edu/Invent/iow/hillier.html http://www.sc.doe.gov/bes/scale_of_things.html http://ncem.lbl.gov/frames/spleem.html //www.ncbi.nlm.nih.gov/pmc/articles/PMC2224998