แหล่งที่มาของของเสีย ของ กากกัมมันตรังสี

กากกัมมันตรังสีมีที่มาจากหลายแหล่ง ส่วนใหญ่มาจากวัฏจักรเชื้อเพลิงนิวเคลียร์และจากการนำกลับไปเข้ากระบวนการใหม่(อังกฤษ: reprocessing) ของอาวุธนิวเคลียร์[ต้องการอ้างอิง] แหล่งอื่นๆได้แก่ ของเสียจากการแพทย์และอุตสาหกรรมเช่นเดียวกับสารกัมมันตรังสีที่เกิดขึ้นตามธรรมชาติ(อังกฤษ: naturally occurring radioactive materials (NORM)) ที่ถูกทำให้เข้มข้นโดยผ่านกระบวนการผลิตหรือการบริโภคถ่านหิน น้ำมันและแก๊ส และแร่ธาตุบางอย่างตามที่กล่าวไว้ด้านล่าง

วัฏจักรเชื้อเพลิงนิวเคลียร์

บทความหลัก: วัฏจักรเชื้อเพลิงนิวเคลียร์และเชื้อเพลิงนิวเคลียร์ใช้แล้ว

บทความนี้เป็นเรื่องกากกัมมันตรังสี, สำหรับข้อมูลบริบท, ดูพลังงานนิวเคลียร์

ปลายส่วนหน้า

ของเสียจากส่วนหน้าของวัฏจักรเชื้อเพลิงนิวเคลียร์โดยปกติจะเป็นการปล่อยรังสีอัลฟา (อังกฤษ: alpha-emitting) จากการสกัดยูเรเนียมซึ่งมักจะประกอบด้วยเรเดียมและผลิตภัณฑ์ที่เกิดจากการสลายตัวของมัน

ยูเรเนียมไดออกไซด์ (UO2) เข้มข้นจากการทำเหมืองแร่มีกัมมันตรังสีไม่มาก - เพียงพันเท่าหรือมากกว่าของปริมาณกัมมันตรังสีจากหินแกรนิตที่ใช้ในการก่อสร้าง มันถูกกลั่นจาก yellowcake (U3O8) แล้วถูกแปลงให้เป็นแก๊สยูเรเนียม hexafluoride (UF6) ในขณะที่เป็นแก๊ส จะผ่านกระบวนการเสริมสมรรถนะเพื่อเพิ่มเนื้อแร่ของ U-235 จาก 0.7% เป็นประมาณ 4.4% (LEU) จากนั้น มันจะถูกเปลี่ยนให้เป็นออกไซด์เซรามิกแข็ง (UO2) สำหรับประกอบขึ้นเป็นองค์ประกอบเชื้อเพลิงเครื่องปฏิกรณ์[2].

ผลพลอยได้หลักจากการเสริมสมรรถนะจะเป็นยูเรเนียมหมดสภาพ (อังกฤษ: depleted uranium (DU)) โดยเฉพาะอย่างยิ่งไอโซโทป U-238 ที่มีเนื้อแร่ U-235 ที่ ~ 0.3% มันจะถูกเก็บไว้ อาจอยู่ในรูปของ UF6 หรือเป็น U3O8 บางตัวจะถูกใช้งานในที่ซึ่งความหนาแน่นสูงมากของมันทำให้มันมีค่าเช่นทำกระสุนต่อต้านรถถัง แม้กระทั่งเคยถูกทำเป็นกระดูกงูเรือใบอย่างน้อยครั้งหนึ่ง[3]. นอกจากนี้ มันยังถูกนำไปใช้กับพลูโตเนียมสำหรับการทำเชื้อเพลิงออกไซด์ผสม (อังกฤษ: mixed oxide fuel (MOX)) และเพื่อเจือจาง หรือกลั่นยูเรเนียมสมรรถนะสูงจากการสะสมอาวุธให้ต่ำลง (อังกฤษ: downbrend) ซึ่งปัจจุบันถูกเปลี่ยนมาเป็นเชื้อเพลิงในเครื่องปฏิกรณ์

ปลายส่วนหลัง

ดูเพิ่มเติม: การนำกลับไปเข้ากระบวนการนิวเคลียร์ใหม่

ปลายส่วนหลังของวัฏจักรเชื้อเพลิงนิวเคลียร์ ส่วนใหญ่เป็นแท่งเชื้อเพลิงใช้แล้ว ประกอบด้วย ผลผลิตจากฟิชชัน (อังกฤษ: fission product) ที่ปล่อยรังสีบีตาและแกมมา และ actinides ทั้งหลายที่ปล่อยอนุภาคแอลฟา เช่นยูเรเนียม-234 เนปทูเนียม-237 พลูโตเนียม-238 และอเมอริเซียม-241 และแม้แต่ตัวปล่อยนิวตรอนบางอย่างเช่นแคลิฟอร์เนียม (Cf) ไอโซโทปเหล่านี้จะเกิดขึ้นในเครื่องปฏิกรณ์นิวเคลียร์

มันเป็นสิ่งสำคัญที่จะต้องแยกแยะกระบวนการ (อังกฤษ: processing) ของยูเรเนียมที่จะทำเป็นเชื้อเพลิงออกจากการนำกลับไปเข้ากระบวนการใหม่ (อังกฤษ: reprocessing) ของเชื้อเพลิงใช้แล้ว เชื้อเพลิงใช้แล้วประกอบด้วยผลผลิตจากฟิชชันที่มีกัมมันตรังสีสูง (ดูของเสียระดับสูงด้านล่าง) ผลผลิตเหล่านี้จำนวนมากจะเป็นตัวดูดซับนิวตรอนที่เรียกว่า'neutron poison'ในบริบทนี้ นิวตรอนพอยซันเหล่านี้ในที่สุดจะสะสมจนถึงระดับที่พวกมันดูดซับนิวตรอนจำนวนมากซะจนทำให้ปฏิกิริยาลูกโซ่หยุด แม้ว่าแท่งควบคุม (ตัวดูดซับ)จะถูกดึงออกจนหมดแล้วก็ตาม ณ จุดนั้น เชื้อเพลิงในเครื่องปฏิกรณ์จะต้องถูกเปลี่ยนด้วยเชื้อเพลิงใหม่สด แม้ว่าจะยังคงมีปริมาณของยูเรเนียม-235 และพลูโทเนียมเหลืออยู่อีกมาก ในสหรัฐอเมริกา เชื้อเพลิงที่ใช้แล้วนี้จะถูกเก็บไว้ ในขณะที่ในบางประเทศเช่นรัสเซีย สหราชอาณาจักรฝรั่งเศส ญี่ปุ่นและอินเดีย เชื้อเพลิงนี้จะมีการนำกลับไปเข้ากระบวนการใหม่เพื่อลบล้างผลผลิตจากฟิชชั่นออก แล้วนำเชื้อเพลิงนั้นกลับมาใช้ใหม่ การนำกลับไปเข้ากระบวนการใหม่นี้เกี่ยวข้องกับการจัดการสารกัมมันตรังสีสูง และผลิตภัณฑ์ที่ถุกแยกออกจากเชื้อเพลิงจะมีรูปแบบของเสียที่เข้มข้นในระดับสูงเหมือนกับสารเคมีที่ใช้ในกระบวนการทั่วไป ในขณะที่ประเทศเหล่านี้ทำการนำกลับไปเข้ากระบวนการใหม่ของเชื้อเพลิงโดยรีไซเคิลพลูโตเนียมเพียงรอบเดียว อินเดียเป็นประเทศเดียวที่รู้กันว่ามีการวางแผนที่จะรีไซเคิลพลูโตเนียมหลายรอบ[4]

องค์ประกอบเชื้อเพลิงและกัมมันตภาพรังสีในระยะยาว

ดูเพิ่มเติม: เชื้อเพลิงนิวเคลียร์ใช้แล้วและของเสียระดับสูง

กิจกรรมของ U-233 สำหรับเชื้อเพลิงสามประเภทกิจกรรมทั้งหมดของเชื้อเพลิงสามชนิด

กากกัมมันตรังสีอายุยืนจากปลายด้านหลังของวัฏจักรเชื้อเพลิงมีความเกี่ยวข้องโดยเฉพาะอย่างยิ่งเมื่อมีการออกแบบวางแผนการจัดการของเสียที่สมบูรณ์สำหรับเชื้อเพลิงนิวเคลียร์ใช้แล้ว(อังกฤษ: spent nuclear fuel (SNF)). เมื่อมองไปที่การสลายกัมมันตรังสีในระยะยาว, actinides ใน SNF มีอิทธิพลอย่างมีนัยสำคัญเนื่องจากครึ่งชีวิตของพวกมันที่ยาวอย่างมีลักษณะสำคัญเป็นพิเศษ. ทั้งนี้ขึ้นอยู่กับสิ่งที่เครื่องปฏิกรณ์นิวเคลียร์ใช้เป็นเชื้อเพลิง, องค์ประกอบ actinide ใน SNF ก็จะแตกต่างกัน

ตัวอย่างของผลกระทบนี้คือการใช้เชื้อเพลิงนิวเคลียร์ที่มีทอเรียม. Th-232 เป็นวัสดุที่อุดมสมบูรณ์ที่สามารถรับปฏิกิริยาการจับนิวตรอนและการสลายกัมมันตรังสีที่ให้บีตาลบสองตัว (อังกฤษ: two beta minus decays), เป็นผลในการผลิต U-233 ที่ทำฟิชชั่นได้. SNF ของวัฏจักรที่มีทอเรียมจะประกอบด้วย U-233. การสลายกัมมันตรังสีของมันจะมีผลอย่างมากต่อเส้นโค้งกิจกรรมระยะยาวของ SNF ประมาณ 1 ล้านปี. การเปรียบเทียบของกิจกรรมที่เกี่ยวข้องกับ U-233 สำหรับชนิดที่แตกต่างกันของ SNF สามอย่างสามารถมองเห็นในภาพด้านบนขวา

เชื้อเพลิงที่ถูกเผาเป็นทอเรียมที่มีพลูโตเนียมเกรดเครื่องปฏิกรณ์(อังกฤษ: reactor-grade plutonium (RGPu)), ทอเรียมที่มีพลูโตเนียมเกรดอาวุธ(อังกฤษ: weapons-grade plutonium (WGPu)) และเชื้อเพลิงออกไซด์ผสม(อังกฤษ: Mixed Oxide fuel (MOX)). สำหรับ RGPu และ WGPu, ปริมาณเริ่มต้นของ U-233 จะมีเวลาการสลายตัวประมาณ 1 ล้านปี. สิ่งนี้มีผลในโค้งกิจกรรมทั้งหมดของเชื้อเพลิงสามชนิด. การขาดหายของ U-233 และผลิตภัณฑ์ลูกของมันในเชื้อเพลิง MOX ส่งผลในกิจกรรมที่ต่ำกว่าในภูมิภาค 3 ของรูปด้านล่างขวา, ในขณะที่สำหรับ RGPu และ WGPu โค้งจะยังคงสูงขึ้นเนื่องจากการปรากฏตัวของ U-233 ที่ไม่ได้สลายตัวอย่างเต็มที่

การใช้เชื้อเพลิงในเครื่องปฏิกรณ์นิวเคลียร์ที่แตกต่างกันส่งผลให้องค์ประกอบ SNF แตกต่างกัน, กับเส้นโค้งกิจกรรมที่แตกต่างกัน

ความกังวลเรื่องการขยายการใช้งาน

ดูเพิ่มเติม: การขยายการใช้งานนิวเคลียร์ (อังกฤษ: Nuclear Proliferation) และพลูโตเนียมเกรดเครื่องปฏิกรณ์

เนื่องจากยูเรเนียมและพลูโตเนียมเป็นวัสดุที่ใช้สร้างอาวุธนิวเคลียร์ จึงมีความกังวลเรื่องการขยายการใช้งาน. ปกติ(ในเชื้อเพลิงนิวเคลียร์ใช้แล้ว), พลูโตเนียมจะเป็นเกรดเครื่องปฏิกรณ์. นอกเหนือจากพลูโตเนียม-239, ซึ่งเหมาะสำหรับการสร้างอาวุธนิวเคลียร์เป็นอย่างมาก, ก็ประกอบด้วยปริมาณที่ไม่พึงประสงค์ของสารปนเปื้อนจำนวนมาก เช่น พลูโตเนียม-240, พลูโตเนียม-241, และพลูโตเนียม-238. ไอโซโทปเหล่านี้เป็นเรื่องยากมากอย่างยิ่งที่จะแยก, และต้องใช้วิธีการที่แพงมากในการสกัดวัสดุฟิชชั่นที่มีอยู่ (เช่นยูเรเนียมสมรรถนะสูงหรือพลูโตเนียมที่ใช้เฉพาะเครื่องปฏิกรณ์การผลิต)[5].

ของเสียระดับสูงมักจะเต็มไปด้วยของผลผลิตจากฟิชชันที่มีกัมมันตรังสีสูง, ซึ่งส่วนใหญ่จะมีชีวิตค่อนข้างสั้น. เรื่องนี้เป็นความกังวลอย่างหนึ่งเพราะถ้าของเสียถูกเก็บไว้, บางทีในที่ฝังเก็บใต้ดิน, กว่าหลายปีที่ผลผลิตจากฟิชชั่นจะสลายตัวหมด, กัมมันตภาพรังสีของของเสียจะลดลงและทำให้ง่ายต่อการเข้าถึงพลูโตเนียม. สารปนเปื้อนที่ไม่พึงประสงค์ Pu-240 สลายตัวเร็วกว่า Pu-239, และนื่เองคุณภาพของวัสดุที่ใช้สร้างระเบิดเพิ่มขึ้นตามเวลา (แม้ว่าปริมาณของมันจะลดลงในช่วงเวลานั้นเช่นกัน). ดังนั้น เมื่อเวลาผ่านไป, พื้นที่จัดเก็บลึกใต้ดินนี้มีศักยภาพที่จะกลายเป็น "เหมืองแร่พลูโตเนียม", จากเหมืองนี้วัสดุสำหรับอาวุธนิวเคลียร์ก็จะสามารถหาซื้อได้โดยไม่ยาก. นักวิจารณ์ของความคิดอันหลังนี้ได้ชี้ให้เห็นว่าครึ่งชีวิตของ Pu-240 คือ 6,560 ปีและ Pu-239 คือ 24,110 ปี, และดังนั้นความสัมพันธ์ระหว่างสมรรถนะของไอโซโทปหนึ่งกับอีกไอโซโทปหนึ่งในช่วงเวลาจะเกิดขึ้นกับครึ่งชีวิต 9,000 ปี (นั่นคือมันจะใช้เวลา 9000 ปีสำหรับเศษชิ้นส่วนของ Pu-240 ในหนึ่งตัวอย่างของไอโซโทปพลูโตเนียมผสม, เพื่อให้ลดลงครึ่งหนึ่งโดยธรรมชาติ--นี่คือแบบอย่างการเสริมสมรรถนะที่จำเป็นเพื่อเปลี่ยน Pu จากเกรดเครื่องปฏิกรณ์เป็นเกรดอาวุธ). ดังนั้น "การทำเหมืองแร่พลูโตเนียมเกรดอาวุธ" จะเป็นปัญหาในอนาคตอีกไกลมาก (> 9,000 ปีนับจากนี้), ดังนั้นมันยังคงมีเวลาเหลืออีกมากสำหรับเทคโนโลยีที่จะก้าวหน้าเพื่อแก้ปัญหามัน[ต้องการอ้างอิง].

Pu-239 สูญสลายไปเป็น U-235 ซึ่งเหมาะสำหรับทำเป็นอาวุธและมีครึ่งชีวิตที่ยาวมาก (ประมาณ 109 ปี) ดังนั้นพลูโตเนียมอาจจะสลายตัวและหลุดออกจากยูเรเนียม-235. อย่างไรก็ตาม เครื่องปฏิกรณ์ที่ทันสมัยจะมีสมรรถนะเพียงปานกลางด้วย U-235 เมื่อเทียบกับ U-238. ดังนั้น U-238 ยังคงทำหน้าที่เป็นตัวแปรสภาพไปจากธรรมชาติ(อังกฤษ: denaturation) สำหรับ U-235 ใดๆที่ผลิตโดยพลูโตเนียมที่สลายตัว

ทางออกหนึ่งในการแก้ไขปัญหานี้คือการรีไซเคิลพลูโตเนียมและใช้เป็นเชื้อเพลิงเช่น ในเครื่องปฏิกรณ์เร็ว. ในเครื่องปฏิกรณ์เร็วแบบ pyrometallurgical, พลูโตเนียมและยูเรเนียมที่แยกจากกันจะถูกปนเปื้อนด้วย actinides และจะไม่สามารถใช้สำหรับสร้างอาวุธนิวเคลียร์ได้

การรื้อถอนอาวุธนิวเคลียร์

ของเสียจากการรื้อถอนอาวุธนิวเคลียร์ไม่น่าจะประกอบด้วยกิจกรรมเบต้าหรือแกมมามากไปกว่าทริเทียมและอะเมริเซียม. มันมีแนวโน้มที่จะประกอบด้วย actinides ที่ปล่อยรังสีแอลฟาเช่น Pu-239 ซึ่งเป็นวัสดุฟิชชั่นที่ใช้ในระเบิด, รวมทั้งวัสดุบางอย่างที่มีกิจกรรมที่เฉพาะเจาะจงมากขึ้นเช่น Pu-238 หรือ Po

ในอดีต ตัวกระตุ้นนิวตรอนสำหรับระเบิดปรมาณูมักจะเป็นเบริลเลียมกับตัวปล่อยรังสีอัลฟากิจกรรมสูงเช่นพอโลเนียมและตัวเลือกของพอโลเนียมคือ Pu-238. สำหรับหลายเหตุผลของการรักษาความปลอดภัยแห่งชาติ, รายละเอียดทั้งหลายของการออกแบบระเบิดที่ทันสมัย​​ปกติจะไม่เปิดเผยต่อสาธารณชน.

การออกแบบบางแบบอาจประกอบด้วยเครื่องกำเนิดไฟฟ้าเทอร์โมอิเล็กทริกเรดิโอไอโซโทป (อังกฤษ: radioisotope thermoelectric generator)โดยใช้ Pu-238 เพื่อให้เป็นแหล่งที่มาของพลังงานไฟฟ้าระยะยาวสำหรับอุปกรณ์อิเล็กทรอนิกส์ในเครื่อง

มันอาจเป็นไปได้ว่าวัสดุฟืชชั่นของระเบิดเก่าที่ได้เวลาทำ refitting แล้วจะประกอบด้วยผลิตภัณฑ์สลายตัวของไอโซโทปพลูโตเนียมที่ใช้ภายในตัวมัน, สิ่งเหล่านี้มีแนวโน้มที่จะรวมถึง U-236 จากสิ่งสกปรกของ Pu-240, รวมทั้งบางส่วนของ U-235 จากการย่อยสลายของ Pu-239; เนื่องจากครึ่งชีวิตค่อนข้างยาวของไอโซโทป Pu เหล่านี้, ของเสียเหล่านี้จากการสลายกัมมันตรังสีของวัสดุหลักของระเบิดจะมีขนาดเล็กมาก, และในกรณีใดๆ, เป็นอันตรายน้อยกว่า (แม้ในแง่ของกัมมันตภาพรังสีธรรมดา) ของ Pu-239 เองมาก

การสลายตัวแบบเบต้าของ Pu-241 ประกอบเป็นรูปแบบของ Am-241; การเติบโตของอะเมริเซียมมีแนวโน้มที่จะเป็นปัญหาที่ยิ่งใหญ่กว่าการสลายตัวของ Pu-239 และ Pu-240 เมื่ออะเมริเซียมเป็นตัวปล่อยรังสีแกมมา (เพิ่มการสัมผัสภายนอกต่อคนงาน) และเป็นตัวปล่อยรังสีอัลฟาที่สามารถก่อให้เกิดการผลิตความร้อน. พลูโตเนียมสามารถถูกแยกออกจากอะเมริเซียมโดยกระบวนการที่แตกต่างกันหลายอย่าง; สิ่งเหล่านี้จะรวมถึงกระบวนการ pyrochemical และการสกัดสารละลายส่วนผสมชองน้ำ/อินทรีย์. กระบวนการสกัดตัดทอนประเภท PUREX จะเป็นวิธีการที่เป็นไปได้อย่างใดอย่างหนึ่งของการแยก. ยูเรเนียมที่เกิดขึ้นโดยธรรมชาติไม่ได้เป็นวัสดุฟิชชั่นเพราะมันประกอบด้วย 99.3% ของ U-238 และมีเพียง 0.7% ของ U-235

ของเสียที่เป็นตำนาน

เนื่องจากกิจกรรมทางประวัติศาสตร์ทั่วไปจะเกี่ยวข้องกับอุตสาหกรรมเรเดียม, การทำเหมืองแร่ยูเรเนียม, และโครงการทางทหาร, มีหลายสถานที่ติดตั้งจำนวนมากที่ประกอบด้วยหรือมีการปนเปื้อนของกัมมันตภาพรังสี. ในสหรัฐอเมริกาประเทศเดียว, กระทรวงพลังงาน(DOE)ระบุว่ามี "หลายล้านแกลลอนของกากกัมมันตรังสี" เช่นเดียวกับ "หลายพันตันของเชื้อเพลิงนิวเคลียร์ใช้แล้วและวัสดุ" และยังมี "ปริมาณมากของดินและน้ำที่ปนเปื้อน"[6]. แม้จะมีปริมาณของเสียที่ซ้ำซ้อนกัน, DOE ได้ระบุเป้าหมายของการทำความสะอาดทุกสถานที่ตั้งที่ปนเปื้อนในปัจจุบันให้ประสบความสำเร็จในปี 2025[6]. ตัวอย่างเช่น ที่เฟอร์นัลด์, โอไฮโอ มี "31 ล้านปอนด์จากผลิตภัณฑ์ยูเรเนียม", "2.5 พันล้านปอนด์ของของเสีย", "2.75 ล้านลูกบาศก์หลาของดินและเศษขยะที่ปนเปื้อน" และ "223 เอเคอร์ที่แฝงอยู่ข้างล่างของแหล่งเก็บกักน้ำใต้ดินที่ Great Miami Aquifer มีระดับยูเรเนียมสูงกว่ามาตรฐานน้ำดื่ม"[6]. สหรัฐอเมริกามีอย่างน้อย 108 ที่ตั้งที่ถูกกำหนดให้เป็นพื้นที่ที่มีการปนเปื้อนและใช้ไม่ได้, บางครั้งหลายพันเอเคอร์[6][7]. DOE ปรารถนาที่จะทำความสะอาดหรือลดการปนเปื้อนในหลายที่ตั้งหรือทั้งหมดในปี 2025 โดยใช้วิธีการ geomelting ที่ถูกพัฒนาขึ้นเมื่อเร็วๆนี้[ต้องการอ้างอิง], อย่างไรก็ตาม งานนี้อาจเป็นเรื่องยากและก็ยอมรับว่าบางที่ตั้งอาจไม่เคยได้รับการชำระล้างอย่างสมบูรณ์. ในเพียงหนึ่งแห่งในจำนวน 108 แห่งที่กำหนดให้ขนาดใหญ่นี้, ห้องปฏิบัติการแห่งชาติ Oak Ridge เป็นตัวอย่างที่มีอย่างน้อย "167 ไซต์ที่รู้กันว้ามีการปล่อยสารปนเปื้อน" ในหนึ่งในสามเขตย่อยของไซต์ขนาด 37,000 เอเคอร์ (150 กิโลเมตร2)[6]. อย่างไรก็ตาม บางส่วนของไซต์ที่สหรัฐอเมริกามีขนาดเล็กโดยธรรมชาติ, ปัญหาการทำความสะอาดจึงทำได้ง่ายกว่าที่จะพูดถึงและ DOE ได้ประสบความสำเร็จในการทำความสะอาดหรืออย่างน้อยก็ปิดไปได้หลายไซต์[6].

ทางการแพทย์

กากกัมมันตรังสีทางการแพทย์มีแนวโน้มที่จะประกอบด้วยตัวปล่อยอนุภาคเบต้าและรังสีแกมมา. มันสามารถแบ่งออกเป็นสองระดับชั้นหลัก. ในเวชศาสตร์นิวเคลียร์ด้านการวินิจฉัยตัวปล่อยแกมมาอายุสั้นจำนวนมากเช่นเทคนีเชียม-99m ถูกนำมาใช้. ตัวปล่อยทั้งหลายเหล่านี้สามารถถูกกำจัดโดยการปล่อยให้มันสลายตัวเป็นเวลาสั้นๆก่อนที่จะกำจัดมันเหมือนของเสียปกติ. ไอโซโทปอื่นๆที่ใช้ในวงการแพทย์, มีครึ่งชีวิตในวงเล็บ, ได้แก่

  • yttrium(Y-90), ใช้บำบัด lymphoma (2.7 วัน)
  • radioiodine(I-131), ใช้ทดสอบการทำงานของต่อมทัยรอยด์และบำบัดมะเร็งของต่อมทัยรอยด์ (8.0 วัน)
  • strontium(Sr-89), ใช้บำบัดมะเร็งกระดูก, การฉีดทางหลอดเลือดดำ (52 วัน)
  • iridium(Ir-192), ใช้สำหรับการฝังแร่ (74 วัน)
  • cobalt(Co-60), ใช้สำหรับการฝังแร่และรังสีบำบัดภายนอก (5.3 ปี)
  • Cs-137, ใช้สำหรับการฝังแร่รังสีภายนอก (30 ปี)

ทางอุตสาหกรรม

ของเสียจากแหล่งอุตสาหกรรมอาจประกอบด้วยตัวปล่อยรังสีอัลฟา, รังสีเบต้า, นิวตรอนหรือรังสีแกมมา. ตัวปล่อยรังสีแกมมาถูกใช้ในการถ่ายภาพในขณะที่แหล่งที่มาของตัวปล่อยนิวตรอนจะถูกใช้หลายช่วงของการใช้งาน, เช่นการหยั่งธรณีของบ่อน้ำมัน[8].

วัสดุกัมมันตรังสีที่เกิดขึ้นตามธรรมชาติ (NORM)

การปล่อยประจำปีของไอโซโทปรังสีของยูเรเนียมและทอเรียมจากการเผาไหม้ถ่านหิน, คาดการณ์โดย Oak Ridge National Laboratory (ORNL) มีปริมาณสะสม 2.9 ล้านตันในช่วงปี 1937-2040, จากการเผาไหม้ถ่านหินประมาณ 637 พันล้านตันทั่วโลก[9].

สารที่มีกัมมันตภาพรังสีตามธรรมชาติเป็นที่รู้จักกันว่าเป็น Naturally occurring radioactive material (NORM). หลังจากผ่านกระบวนการของมนุษย์ที่เปิดออกสู่บรรยากาสหรือทำให้เข้มข้นแล้ว(เช่นการทำเหมืองแร่ที่นำถ่านหินขึ้นมาที่พื้นผิวหรือการเผาไหม้มันในการผลิตเถ้าเข้มข้น) กัมมันตภาพรังสีธรรมชาตินี้จะกลายเป็นวัสดุกัมมันตรังสีที่เกิดขึ้นตามธรรมชาติถูกเพิ่มสมรรถนะด้วยเทคโนโลยี (อังกฤษ: technologically-enhanced naturally-occurring radioactive material (TENORM))[10]. ของเสียจำนวนมากนี้เป็นสารที่ปล่อยอนุภาคอัลฟาจากโซ่การสลายตัวของยูเรเนียมและทอเรียม. แหล่งที่มาหลักของรังสีในร่างกายมนุษย์เป็นโพแทสเซียม-40 (40K), ปกติจะมี 17 มิลลิกรัมในร่างกายในหนึ่งช่วงเวลาและเข้าสู่ร่างกายปริมาณ 0.4 มิลลิกรัม/วัน[11]. หินส่วนใหญ่, เนื่องจากส่วนประกอบของพวกมัน, มีระดับของกัมมันตภาพรังสีที่ต่ำ. โดยปกติมีตั้งแต่ 1 millisievert (mSv) ถึง 13 mSv ต่อปีขึ้นอยู่กับสถานที่, การเปิดรับรังสีเฉลี่ยจากไอโซโทปรังสีธรรมชาติคือ 2.0 mSv ต่อคนต่อปีทั่วโลก[12]. ตัวเลขนี้ได้มีการชดเชยส่วนใหญ่ของปริมาณรวมทั่วไป (ที่มีค่าการเปิดรับเฉลี่ยรายปีจากแหล่งที่มาอื่นๆเป็นจำนวน 0.6 mSv จากการทดสอบทางการแพทย์โดยเฉลี่ยของประชาชนทั้งหมด, 0.4 mSv จากรังสีคอสมิก, 0.005 mSv จากมรดกของการทดสอบนิวเคลียร์ในบรรยากาศที่ผ่านมา, 0.005 mSv สัมผัสโดยอาชีพ, 0.002 mSv จากภัยพิบัติเชอร์โนบิล, และ 0.0002 mSv จากวัฏจักรเชื้อเพลิงนิวเคลียร์)[12].

TENORM ไม่ได้ถูกกำกับดูแลอย่างเข้มงวดเหมือนของเสียจากเครื่องปฏิกรณ์นิวเคลียร์, แม้ว่ามันจะไม่มีความแตกต่างอย่างมีนัยสำคัญในความเสี่ยงด้านรังสีจากวัสดุเหล่านี้[13].

ถ่านหิน

ถ่านหินประกอบด้วยจำนวนเล็กๆของกัมมันตรังสีของยูเรเนียม, แบเรียม, ทอเรียม, และโพแทสเซียม. แต่ในกรณีของถ่านหินบริสุทธิ์, จำนวนนี้ยังน้อยอย่างมีนัยสำคัญกว่าความเข้มข้นเฉลี่ยขององค์ประกอบเหล่านั้นในเปลือกโลก. ชั้นหินที่ล้อมรอบ, ถ้าเป็นหิน shale หรือดินดาน, มักจะมีปริมาณกัมมันตรังสีน้อยกว่าค่าเฉลี่ยเล็กน้อยและนี้อาจจะสะท้อนให้เห็นถึงปริมาณของเนื้อเถ้าของถ่าน 'สกปรก'[9][14]. แร่ธาตุเถ้าที่มีการใช้งานมากขึ้นจะกลายเป็นเข้มข้นอยู่ในเถ้าลอยเพราะพวกมันจะไม่ถุกเผาไหม้จนหมดอย่างแน่นอน[9]. กัมมันตภาพรังสีของเถ้าลอยเป็นเรื่องเดียวกันกับที่หินเชลล์สีดำแต่น้อยกว่าหินฟอสเฟต, แต่มีมากขึ้นของความกังวลเพราะจำนวนเล็ก ๆ ของเถ้าลอยจะไปสิ้นสุดในบรรยากาศที่มันสามารถถูกสูดดมเข้าไปได้[15]. ตามรายงานของ คณะกรรมการแห่งชาติเพื่อการป้องกันและการวัดรังสีของสหรัฐอเมริกา (อังกฤษ: National Council on Radiation Protection and Measurements (NCRP)), ประชากรที่เปิดรับกับโรงไฟฟ้าขนาด 1000 MWe จะได้รับรังสีจำนวน 490 person-rem/year จากโรงงานไฟฟ้าถ่านหิน, 100 เท่าของจากโรงไฟฟ้าพลังงานนิวเคลียร์ (4.8 person-rem/year) (เปิดรับจากวัฏจักรเชื้อเพลิงนิวเคลียร์ที่สมบูรณ์ตั้งแต่การทำเหมืองแร่จนถึงการกำจัดของเสียจะเป็น 136 person-rem/year, ปริมาณการใช้ถ่านหินที่สอดคล้องกันตั้งแต่การทำเหมืองจนถึงการกำจัดของเสียคือ "อาจไม่ทราบ")[9].

น้ำมันและก๊าซ

สารตกค้างจากอุตสาหกรรมน้ำมันและก๊าซมักจะประกอบด้วยเรเดียมและผลิตภัณฑ์ที่สลายตัวของมัน. ขนาดของซัลเฟตจากบ่อน้ำมันหนึ่งบ่อสามารถอุดมไปด้วยเรเดียมอย่างมาก, ในขณะที่น้ำ, น้ำมันและก๊าซจากบ่อมักจะประกอบด้วยเรดอน. เรดอนสูญสลายเป็นไอโซโทปรังสีในรูปแบบของแข็งซึ่งสร้างรูปเคลือบผิวด้านในของท่อ. ในโรงงานแปรรูปน้ำมัน พื้นที่ของโรงงานที่จัดการกับโพรเพนมักจะเป็นหนึ่งในพื้นที่ที่ปนเปื้อนมากกว่าที่อื่นของโรงงานเพราะเรดอนมีจุดเดือดที่คล้ายกับของโพรเพน[16].

ใกล้เคียง

กากกัมมันตรังสี กากถั่วเหลือง การกัดเซาะชายฝั่งทะเลของประเทศไทย การกักกันชาวอเมริกันเชื้อสายญี่ปุ่น การกัดกร่อน การกัดเซาะชายฝั่ง การกักกัน การกักด่าน การกั้นด่านที่เบอร์ลิน กาลกัตตา

แหล่งที่มา

WikiPedia: กากกัมมันตรังสี http://www.marathonresources.com.au/nuclearwaste.a... http://www.uic.com.au/nip78.htm http://www.dailykos.com/story/2009/6/13/742039/-Co... http://www.enprotec-inc.com/Presentations/NORM.pdf http://books.google.com/?id=1LvMLoaN0HQC&pg=PA279&... http://books.google.com/books?id=LT4MSqv9QUIC&pg=P... http://books.google.com/books?id=m0XndPyS8ZYC&lpg=... http://www.informaworld.com/smpp/content~db=all~co... http://www.janes.com/defence/news/jdw/jdw010108_1_... http://www.logwell.com/tech/nuclear/index.html