การใช้งานที่เชี่ยวชาญพิเศษ ของ การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก

MRI แบบการซึมผ่าน

ภาพ DTI

MRI แบบการซึมผ่านใช้วัดการการซึมผ่านของโมเลกุลน้ำในเนื้อเยื่อชีวภาพ[91]. ในทางการแพทย์, MRI แบบการซึมผ่านเป็นประโยชน์สำหรับการวินิจฉัยหลายเงื่อนไข (เช่นโรคหลอดเลือดสมอง), หรือความผิดปกติทางระบบประสาท (เช่นเส้นโลหิตตีบหลายเส้น), และช่วยให้เข้าใจดีขึ้นของการเชื่อมต่อของ white matter axons ในระบบประสาทส่วนกลาง[92]. ในตัวกลางแบบสม่ำเสมอดี (อังกฤษ: isotropic medium) (ตัวอย่างเช่นภายในแก้วน้ำ) โมเลกุลของน้ำจะย้ายแบบสุ่มตามธรรมชาติไปตามความวุ่นวายและการ'เคลื่อนที่แบบ Brownian'. อย่างไรก็ตาม ในเนื้อเยื่อชีวภาพที่ซึ่ง'ตัวเลขของ Reynolds' อยู่ในระดับต่ำที่เพียงพอสำหรับกระแสที่จะเป็นการไหลแบบเรื่อยๆ, การซึมผ่านอาจเป็นแบบ anisotropic. ตัวอย่างเช่นโมเลกุลหนึ่งภายใน axon ของเซลล์ประสาทหนึ่งมีความน่าจะเป็นที่ต่ำของการข้ามเยื่อ myelin. ดังนั้นโมเลกุลจะย้ายเป็นหลักไปตามแกนของเส้นใยประสาท. ถ้ามันเป็นที่รู้จักกันว่าหลายโมเลกุลในหนึ่ง voxel (volume+pixel) โดยเฉพาะจะซึมผ่านในทิศทางเดียวเป็นหลัก, สมมติฐานสามารถคิดได้ว่าส่วนใหญ่ของเส้นใยในบริเวณนี้จะเป็นแนวขนานกับทิศทางนั้น.

การพัฒนาเร็วๆนี้ของการถ่ายภาพแรงดึงการซึมผ่าน (อังกฤษ: diffusion tensor imaging (DTI))[93] ช่วยให้การซึมผ่านสามารถวัดได้ในหลายทิศทางและเศษชิ้นส่วนแบบ anisotropy ในแต่ละทิศทางสามารถคำนวณได้สำหรับแต่ละ voxel. นี่จะช่วยให้นักวิจัยสามารถทำแผนที่สมองของทิศทางเส้นใยเพื่อตรวจสอบการเชื่อมต่อของภูมิภาคที่แตกต่างกันในสมอง (โดยใช้วิธีการถ่ายภาพลำเส้นใยประสาท (อังกฤษ: tractography)) หรือเพื่อตรวจสอบพื้นที่ของความเสื่อมและการ demyelination ของระบบประสาทในโรคเช่นเส้นโลหิตตีบหลายเส้น (อังกฤษ: multiple sclerosis).

การประยุกต์ใช้ MRI แบบการซึมผ่านอีกประการหนึ่งคือการถ่ายภาพด้วการให้น้ำหนักการซึมผ่าน (อังกฤษ: diffusion-weighted imaging (DWI)). ต่อจากโรคหลอดเลือดสมองตีบ, DWI มัความไวอย่างสูงต่อการเปลี่ยนแปลงที่เกิดขึ้นในแผล[94]. คาดการณ์ว่าการเพิ่มขึ้นของข้อจำกัด (อุปสรรค) ของการซึมผ่านของน้ำ, ที่เป็นผลมาจากพิษอาการบวมน้ำ (บวมแบบเซลลูลาร์), เป็นผู้รับผิดชอบสำหรับการเพิ่มขึ้นของสัญญาณบน DWI สแกน. การเพิ่มประสิทธิภาพของ DWI จะปรากฏภายใน 5-10 นาทีของการเริ่มมีอาการของโรคหลอดเลือดสมอง (เมื่อเทียบกับการตรวจเอกซเรย์คอมพิวเตอร์ซึ่งมักจะตรวจไม่พบการเปลี่ยนแปลงของหัวใจวายเฉียบพลันได้ถึง 4-6 ชั่วโมง) และยังคงอยู่ได้นานถึงสองสัปดาห์. ควบคู่ไปกับการถ่ายภาพของ การฉีดเลือดไปเลี้ยงสมอง (อังกฤษ: cerebral perfusion), นักวิจัยสามารถเน้นภูมิภาคของ "การฉีด/การซึมผ่านที่ไม่ตรงกัน" ที่อาจบ่งชี้ถึงภูมิภาคที่มีความสามารถในการกอบกู้กลับคืนโดยการรักษาด้วยการฉีดซ้ำ.

เช่นเดียวกับหลายการใช้งานความชำนาญพิเศษอื่นๆ, เทคนิคนี้มักจะใช้ควบคู่กับลำดับการสร้างภาพอย่างรวดเร็ว, เช่นลำดับการถ่ายภาพในระนาบสะท้อน.

การบันทึกภาพหลอดเลือดด้วยคลื่นสนามแม่เหล็ก

การบันทึกภาพหลอดเลือดด้วยคลื่นสนามแม่เหล็ก

การบันทึกภาพหลอดเลือดด้วยคลื่นสนามแม่เหล็ก (อังกฤษ: Magnetic resonance angiography (MRA)) ใช้สร้างภาพของหลอดเลือดแดงเพื่อประเมินการตีบของพวกมัน (การแคบลงผิดปกติ) หรือโป่งพอง (การขยายออกของผนังหลอดเลือดที่มีความเสี่ยงของการแตกออก). MRA มักจะถูกใช้ในการประเมินหลอดเลือดแดงของลำคอและสมอง, เส้นเลือดทรวงอกและช่องท้อง, หลอดเลือดแดงของไต, และขา (ที่เรียกว่า "run-off"). เทคนิคที่หลากหลายสามารถนำมาใช้ในการสร้างภาพ, เช่นการใช้ contrast agent ของสารแม่เหล็ก (แกโดลิเนียม) หรือใช้เทคนิคที่เรียกว่า "การเพิ่มประสิทธิภาพที่เกี่ยวกับการไหล" (เช่น ลำดับ time-of-flight แบบ 2D และ 3D), ที่ส่วนใหญ่ของสัญญาณบนภาพเกิดจากเลือดที่เพิ่งย้ายเข้ามาในระนาบนั้น, ดูเพิ่มเติมใน FLASH MRI. เทคนิคที่เกี่ยวข้องกับการสะสมของขั้นตอน (ที่รู้จักกันว่าเป็น'การถ่ายภาพหลอดเลือดแบบขั้นตอนตรงกันข้าม' (อังกฤษ: phase contrast angiography)) ก็ยังสามารถนำไปใช้ในการสร้างแผนที่ความเร็วการไหลได้อย่างง่ายดายและแม่นยำ. การสร้างภาพหลอดเลือดดำด้วยสนามแม่เหล็ก (อังกฤษ: Magnetic resonance venography (MRV)) เป็นขั้นตอนที่คล้ายกันที่จะใช้ในการถ่ายภาพเส้นเลือดดำ. ในวิธีการนี้, เนื้อเยื่อจะถูกกระตุ้นอ่อนๆ, ในขณะที่สัญญาณจะรวมตัวกันในระนาบโดยทันทีที่เหนือกว่าระนาบของการกระตุ้น, จึงได้ภาพเส้นเลือดดำที่เพิ่งย้ายมาจากระนาบที่ถูกกระตุ้น[95].

การวิเคราะห์สเปกตรัมด้วยคลื่นสนามแม่เหล็ก

การวิเคราะห์สเปกตรัมด้วยคลื่นสนามแม่เหล็ก (อังกฤษ: Magnetic resonance spectroscopy (MRS)) ถูกนำมาใช้ในการวัดระดับของสาร metabolite ที่แตกต่างกันในเนื้อเยื่อของร่างกาย. สัญญาณ MR จะผลิตสเปกตรัมของเรโซแนนที่สอดคล้องกับการจัดโมเลกุลที่แตกต่างกันของไอโซโทปที่กำลังถูก "กระตุ้น". สัญญาณนี้จะถูกใช้ในการวินิจฉัยความผิดปกติของการเผาผลาญอาหารบางอย่าง, โดยเฉพาะอย่างยิ่งพวกที่มีผลกระทบต่อสมอง[96] และเพื่อให้ข้อมูลเกี่ยวกับการเผาผลาญอาหารที่ทำให้เกิดเนื้องอก[97].

การถ่ายภาพสเปกตรัมด้วยคลื่นสนามแม่เหล็ก (อังกฤษ: Magnetic resonance spectroscopic imaging (MRSI)) จะรวมเข้าด้วยกันทั้งวิธีการวิเคราะห์และการถ่ายภาพในการผลิตสเปกตรัมท้องถิ่นสันนิษฐานจากภายในตัวอย่างหรือในผู้ป่วย. ความละเอียดเชิงพื้นที่จะต่ำกว่ามาก (จำกัดโดยค่า SNR ที่มี), แต่สเปกตรัมในแต่ละ voxel ประกอบด้วยข้อมูลเกี่ยวกับสาร metabolites หลายตัว. เนื่องจากสัญญาณที่ได้จะใช้ในการเข้ารหัสข้อมูลเชิงพื้นที่และเชิงสเปกตรัม, MRSI ต้องการ SNR ที่สูงที่จะสามารถทำได้เฉพาะที่มีสนามแม่เหล็กความเข้มข้นสูงเท่านั้น (3 เทสลาและทากกว่า)[ต้องการอ้างอิง]. many metabolites. Because the available signal is used to encode spatial and spectral information, MRSI requires high SNR achievable only at higher field strengths (3 T and above).[ต้องการอ้างอิง]

Functional MRI

fMRI สแกนแสดงภูมิภาคของการทำงาน(สีส้ม) รวมทั้ง เปลือกนอกของสมองที่มีหน้าที่เกี่ยวกับการมองเห็นหลัก (V1, BA17)

Functional MRI (fMRI) ใช้วัดการเปลี่ยนแปลงของสัญญาณในสมองเนื่องจากการเปลี่ยนแปลงในกิจกรรมของระบบประสาท. เมื่อเทียบกับการถ่ายภาพกายวิภาค T1W, สมองจะถูกสแกนที่ความละเอียดเชิงพื้นที่ที่ต่ำกว่า แต่ที่ความละเอียดที่สูงขึ้นชั่วขณะ (โดยทั่วไปแล้วหนึ่งครั้งทุก 2-3 วินาที). การเพิ่มขึ้นของกิจกรรมของระบบประสาททำให้เกิดการเปลี่ยนแปลงในสัญญาณ MR ผ่านการเปลี่ยนแปลง T*
2[98]; กลไกนี้จะเรียกว่า'ผลกระทบ BOLD' (blood-oxygen-level dependent effect). กิจกรรมของระบบประสาทที่เพิ่มขึ้นทำให้เกิดความต้องการออกซิเจนเพิ่มขึ้นและระบบหลอดเลือดทำการชดเชยที่มากเกินจริงสำหรับความต้องการนี้, เป็นการเพิ่มปริมาณของฮีโมโกลบินที่หล่อเลี้ยงด้วยออกซิเจนเมื่อเทียบกับฮีโมโกลบินที่ไม่หล่อเลี้ยงด้วยออกซิเจน. เนื่องจากฮีโมโกลบินที่ไม่หล่อเลี้ยงด้วยออกซิเจนจะลดทอนสัญญาณ MR, การตอบสนองของหลอดเลือดจะนำไปสู่การเพิ่มขึ้นของสัญญาณที่เกี่ยวข้องกับกิจกรรมของระบบประสาท. ธรรมชาติที่แม่นยำของความสัมพันธ์ระหว่างกิจกรรมของระบบประสาทและสัญญาณ BOLD เป็นหัวข้อของการวิจัยในปัจจุบัน .ผลกระทบของ BOLD นี้ยังทำให้เกิดการผลิตแผนที่ความละเอียดสูง 3 มิติของเส้นเลือดดำภายในเนื้อเยื่อของระบบประสาท.

ในขณะที่การวิเคราะห์สัญญาณ BOLD เป็นวิธีการที่พบมากที่สุดที่ใช้สำหรับการศึกษาประสาทวิทยาในห้วข้อของมนุษย์, ธรรมชาติที่ยืดหยุ่นของการถ่ายภาพ MR ได้ให้วิธีการหลายอย่างเพื่อรับรู้สัญญาณในด้านอื่นๆของการแจกจ่ายเลือด. เทคนิคที่เป็นทางเลือกอื่นจะใช้วิธ๊การติดฉลากเส้นเลือดแดงที่หมุน (อังกฤษ: arterial spin labeling (ASL)) หรือการถ่วงน้ำหนักสัญญาณ MRI โดยการไหลเวียนของเลือดในสมอง (อังกฤษ: cerebral blood flow (CBF)) และปริมาณของเลือดในสมอง (อังกฤษ: cerebral blood volume (CBV)). วิธี CBV ต้องฉีดของหนึ่งชั้นของ contrast agent ของ MRI ที่ในขณะนี้อยู่ในการทดลองทางคลินิกของมนุษย์. เนื่องจากวิธีการนี้ได้รับการแสดงให้เห็นว่ามีความไวกว่ามากๆเมื่อเทียบกับเทคนิค BOLD ในการศึกษาพรีคลินิก, มันอาจมีศักยภาพที่จะขยายบทบาทของ fMRI ในการใช้งานทางคลินิก. วิธี CBF ให้ข้อมูลเชิงปริมาณมากกว่าสัญญาณ BOLD, แม้ว่าจะสูญเสียอย่างมีนัยสำคัญของความไวการตรวจสอบ[ต้องการอ้างอิง].

MRI แบบเวลาจริง

MRI แบบเวลาจริงของหัวใจมนุษย์ที่ความละเอียด 50 มิลลิวินาที

MRI แบบเวลาจริง หมายถึงการเฝ้าดู ("ถ่ายทำ") อย่างต่อเนื่องของวัตถุที่เคลื่อนไหวในเวลาจริง. ในขณะที่หลายกลยุทธ์ที่แตกต่างกันได้รับการพัฒนาตลอดสองทศวรรษที่ผ่านมา, การพัฒนาเร็วๆนี้ได้รายงานเทคนิค MRI เวลาจริงบนพื้นฐานของ FLASH รัศมีและการฟื้นฟูซ้ำที่ทำให้ได้ความละเอียดชั่วคราวที่ 20-30 มิลลิวินาทีสำหรับภาพที่มีความละเอียดในระนาบ 1.5 ถึง 2.0 มิลลิเมตร. วิธีการใหม่เป็นสัญญาว่าจะเพิ่มข้อมูลที่สำคัญเกี่ยวกับโรคของข้อต่อและการเต้นของหัวใจ. ในหลายกรณีการตรวจ MRI อาจจะกลายเป็นเรื่องง่ายและสะดวกสบายมากขึ้นสำหรับผู้ป่วย[99].

MRI แบบแทรกแซง

การไม่มีผลกระทบที่เป็นอันตรายต่อผู้ป่วยและผู้ใช้เครื่องทำให้ MRI เหมาะสำหรับ"การรักษาทางรังสีวิทยา" (อังกฤษ: interventional radiology) ซึ่งภาพที่ผลิตโดยเครื่องสแกน MRI จะถูกใช้ในการให้คำแนะนำขั้นตอนการเข้าสู่ร่างกายน้อยที่สุด. แน่นอนว่าวิธีการดังกล่าวจะต้องทำโดยไม่ต้องใช้เครื่องมือใดๆที่เกี่ยวข้องกับ ferromagnetic.

ส่วนย่อยของ MRI แบบแทรกแซงซึ่งมีความเป็นพิเศษเพิ่มขึ้นก็คือส่วนของ MRI ที่ทำงานในระหว่างการผ่าตัด (อังกฤษ: intraoperative MRI) ในที่ซึ่ง MRI จะถูกใช้ในขั้นตอนการผ่าตัด. บางระบบของ MRI ที่เชี่ยวชาญพิเศษได้รับการพัฒนาเพื่อช่วยให้ทำการถ่ายภาพพร้อมไปกับการผ่าตัด. อย่างไรก็ตาม ที่ใช้กันโดยทั่วไปมากขึ้น วิธีการผ่าตัดจะถูกขัดจังหวะชั่วคราวเพื่อทำการถ่ายภาพ MR เพื่อตรวจสอบความสำเร็จของขั้นตอนหรือแนวทางการทำงานภายหลังการผ่าตัด[ต้องการอ้างอิง].

คลื่นสนามแม่เหล็กใช้นำทางการอัลตราซาวนด์ที่โฟกัส

ในการรักษาแบบ MRgFUS, ลำแสงอัลตราซาวนด์จะโฟกัสไปที่เนื้อเยื่อ--ที่ถูกนำทางและควบคุมโดยการใช้ MR ถ่ายภาพด้วยความร้อน และเนื่องจากการสะสมพลังงานอย่างมีนัยสำคัญที่จุดโฟกัส, อุณหภูมิภายในเนื้อเยื่อจะเพิ่มขึ้นถึงกว่า 65 °C (150 °F), ทำลายมันอย่างสมบูรณ์. เทคโนโลยีนี้ทำให้สามารถลอกเนื้อเยื่อที่เป็นโรคได้แม่นยำ. การถ่ายภาพด้วย MR จะให้มุมมองสามมิติของเนื้อเยื่อเป้าหมาย, เพื่อให้สามารถโฟก้สได้อย่างแม่นยำไปที่พลังงานอัลตราซาวนด์. การถ่ายภาพ MR จะให้พื้นที่ที่จะได้รับการรักษาด้วยปริมาณ, เวลาจริง, และภาพความร้อน. ภาพนี้จะช่วยให้แพทย์แน่ใจว่าอุณหภูมิที่เกิดขึ้นในระหว่างแต่ละรอบของพลังงานอัลตราซาวด์จะเพียงพอที่จะทำให้เกิดการลอกด้วยความร้อนภายในเนื้อเยื่อที่ต้องการและถ้าไม่, เพื่อปรับพารามิเตอร์เพื่อให้แน่ใจว่าการรักษามีประสิทธิภาพ[100].

การถ่ายภาพแบบ Multinuclear

ไฮโดรเจนจะถูกถ่ายภาพนิวเคลียสบ่อยที่สุดใน MRI เพราะมันปรากฏอยู่ในเนื้อเยื่อชีวภาพทั่วไป, และเนื่องจากอัตรา gyromagnetic ที่สูงของมันจะให้สัญญาณที่แรง. อย่างไรก็ตามนิวเคลียสใดๆที่มี'สปินของนิวเคลียร์สุทธิ' (อังกฤษ: net nuclear spin) (สปินหมายถึงการวางต้วของนิวเคลียสของไฮโดรเจน) อาจจะสามารถถ่ายภาพได้ด้วย MRI. นิวเคลียสดังกล่าวรวมถึงฮีเลียม-3, ลิเธียม-7, คาร์บอน 13, ฟลูออรีน-19, ออกซิเจน-17, โซเดียม-23, ฟอสฟอรัส-31 และซีนอน-129. 23Na และ 31P จะพบตามธรรมชาติอย่างมากมายในร่างกาย, ดังนั้นจึงสามารถถ่ายภาพได้โดยตรง. ไอโซโทปที่เป็นก๊าซเช่น 3HE หรือ 129Xe ต้องถูก hyperpolarized จากนั้นก็ถูกหายใจเข้าเพราะความหนาแน่นทางนิวเคลียร์ของพวกมันอยู่ในระดับต่ำเกินไปที่จะให้สัญญาณที่มีประโยชน์ภายใต้สภาวะปกติ. 17O และ 19F สามารถบริหารในปริมาณที่เพียงพอในรูปของเหลว (เช่น 17O น้ำ) ที่การ hyperpolarization ไม่จำเป็น[ต้องการอ้างอิง].

นอกจากนี้ นิวเคลียสของอะตอมใดๆที่มีสปินนิวเคลียร์สุทธิและที่ถูกผูกมัดกับอะตอมไฮโดรเจนอาจจะถูกถ่ายภาพผ่านการ MRI แบบ heteronuclear magnetization transfer ที่จะถ่ายภาพนิวเคลียสของไฮโดรเจนที่มีอัตราส่วน gyromagnetic ที่สูงแทนที่จะถ่ายนิวเคลียสที่มีอัตราส่วน gyromagnetic ที่ต่ำที่ผูกมัดกับอะตอมไฮโดรเจน[101]. ในหลักการ MRI แบบ hetereonuclear magnetization transfer สามารถนำมาใช้ในการตรวจสอบการมีหรือการไม่มีของพันธะทางเคมีที่เฉพาะเจาะจง[102][103].

การถ่ายภาพแบบ Multinuclear เป็นหลักของเทคนิคการวิจัยในปัจจุบัน. อย่างไรก็ตาม การใช้งานที่อาจเกิดขึ้นจะรวมถึงการถ่ายภาพการทำงานและการถ่ายภาพของอวัยวะที่เห็นว่าไม่ดีบน 1H MRI (เช่นปอดและกระดูก) หรือเป็น contrast agent ทางเลือก. 3HE hyperpolarized ที่หายใจเข้าไปสามารถนำไปในการถ่ายภาพการกระจายตัวของช่องว่างอากาศภายในปอด. สารละลายแบบฉีดที่ประกอบด้วย 13C หรือฟองที่เสถียรของ 129Xe ที่ hyperpolarized ได้รับการศึกษาเพื่อเป็น contrast agent สำหรับการถ่ายภาพรังสีและการฉีดโลหิต. 31P อาจจะสามารถให้ข้อมูลเกี่ยวกับความหนาแน่นของกระดูกและโครงสร้าง, เช่นเดียวกับการถ่ายภาพการทำงานของสมอง. การถ่ายภาพ Multinuclear มีศักยภาพในการทำแผนที่การกระจายตัวของลิเธียมในสมองมนุษย์, ธาตุนี้พบว่าสามารถใช้เป็นยาที่สำคัญสำหรับผู้ที่มีสภาพเช่นโรค bipolar disorder[ต้องการอ้างอิง].

การถ่ายภาพระดับโมเลกุลโดย MRI

บทความหลัก: การถ่ายภาพระดับโมเลกุล

MRI มีข้อได้เปรียบของการมีความละเอียดเชิงพื้นที่สูงมากและเชี่ยวชาญมากในการถ่ายภาพลักษณะทางสัณฐานวิทยาและการถ่ายภาพการทำงาน. MRI ก็มีข้อเสียหลายอย่างเหมือนกัน. อย่างแรก, MRI มีความไวราว 10−3 โมล/ลิตร ถึง 10−5 โมล/ลิตร ซึ่ง, เมื่อเทียบกับการถ่ายภาพประเภทอื่นๆ, ต่อนข้างจำกัดอย่างมาก. ปัญหานี้เกิดจากความจริงที่ว่าความแตกต่างระหว่างอะตอมแต่ละตัวในสถานะพลังงานสูงและสถานะพลังงานต่ำมีขนาดเล็กมาก. ยกตัวอย่างเช่น, ที่ 1.5 Teslas, ความเข้มของสนามปกติสำหรับ MRI ทางคลินิก, ความแตกต่างระหว่างสถานะพลังงานที่สูงและที่ต่ำจะอยู่ที่ประมาณ 9 โมเลกุลต่อ 2,000,000. การปรับปรุงเพื่อเพิ่มความไวของ MR รวมถึงการเพิ่มความเข้มของสนามแม่เหล็กและการ hyperpolarization ผ่านการสูบแสงหรือการ polarization ของนิวเคลียร์แบบไดนามิก. นอกจากนี้ยังมีความหลากหลายของรูปแบบการขยายสัญญาณที่มีพื้นฐานอยู่บนการแลกเปลี่ยนสารเคมีที่เพิ่มความไว[ต้องการอ้างอิง].

เพื่อให้สัมฤทธิผลในการถ่ายภาพระดับโมเลกุลของตัวบ่งชี้ทางชีวภาพของโรคโดยใช้ MRI, contrast agent ของ MRI ที่เป็นเป้าหมายจึงต้องการความจำเพาะและ relaxivity (ความไว)ที่สูง. วันนี้, การศึกษาจำนวนมากถูกอุทิศเพื่อการพัฒนา contrast agent ของ MRI เป้าหมายให้สัมฤทธ์ผลในการถ่ายภาพระดับโมเลกุลโดย MRI. โดยทั่วไป, เปปไทด์, แอนติบอดี้หรือ ligands ขนาดเล็ก, และแหล่งโปรตีนขนาดเล็ก, เช่น HER-2 affibodies ได้ถูกนำมาประยุกต์ใช้เพื่อให้บรรลุเป้าหมาย. เพื่อเพิ่มความไวของ contrast agent, ครึ่งหนึ่งของเป้าหมายเหล่านี้มักจะเชื่อมโยงกับ contrast agent ของ MRI ที่มี payload สูง หรือ relaxivities สูง[104]. คลาสใหม่ของยีนที่ contrast agents (CA) ของ MR เป้าหมายได้รับการแนะนำให้แสดงการกระทำของยีน mRNA ที่ไม่เหมือนใครและโปรตีนที่มี transcription factor ของยีน[105][106]. CA ใหม่นี้สามารถติดตามเซลล์ที่มี mRNA ไม่ซ้ำกัน, microRNA และไวรัส; การตอบสนองของเนื้อเยื่อต่อการอักเสบของในสมองที่อาศัยอยู่[107]. MR จะรายงานการเปลี่ยนแปลงในการแสดงออกของยีนที่มีความสัมพันธ์ทางบวกกับการวิเคราะห์ของ TaqMan, การส่องกล้องจุลทรรศน์แสงและอิเล็กตรอน[108].

ใกล้เคียง

การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก การสร้างภาพประสาท การสร้างภาพโดยกิจด้วยเรโซแนนท์แม่เหล็ก การสร้างสรรค์ การสร้างเม็ดเลือดแดง การสร้างอาดัม (มีเกลันเจโล) การสรรหาสมาชิกวุฒิสภาไทย พ.ศ. 2551 การสรรหาสมาชิกวุฒิสภาไทย พ.ศ. 2554 การสร้างภาพทางการแพทย์ การสร้างกลูโคส

แหล่งที่มา

WikiPedia: การสร้างภาพด้วยเรโซแนนซ์แม่เหล็ก http://webstore.iec.ch/Webstore/webstore.nsf/0/EC1... http://icd9cm.chrisendres.com/index.php?srchtype=p... http://www.eradimaging.com/site/article.cfm?ID=426 http://www.falckproductions.com/resources/mri-safe... http://www.gehealthcare.com/usen/mr/docs/SPV8_Avoi... http://www.goingfora.com/radiology/mri.html http://www.howequipmentworks.com/physics/medical_i... http://www.ibji.com/images/lyftenbloggie/poster_go... http://journals.lww.com/neuroreport/Abstract/2006/... http://www.mdpi.com/1660-4601/6/6/1778/pdf