วิธีการเก็บรักษา ของ การเก็บพลังงาน

การจัดเก็บทางเครื่องกล

มวล 1 กิโลกรัม, ถูกยกขึ้นสูง 1,000 เมตรจะเก็บพลังงานโน้มถ่วงได้ 9.8 กิโลจูล, ซึ่งเทียบเท่ากับมวล 1 กก. เร่งความเร็วถึง 140 เมตร/วินาที. เป็นปริมาณของพลังงานเดียวกันที่ต้องใช้ในการเพิ่มอุณหภูมิของน้ำ 1 กิโลกรัมให้มีอุณหภูมิสูงขึ้น 2.34 °C.

พลังงานสามารถถูกเก็บไว้ในน้ำที่ถูกสูบให้อยู่ในระดับที่สูงขึ้นโดยใช้วิธีการเก็บรักษาแบบสูบ (อังกฤษ: pumped storage method) และโดยการย้ายของแข็งไปยังสถานที่ที่สูงขึ้นเช่นกัน. หลายบริษัท เช่น Energy Cache และ Advanced Rail Energy Storage (ARES) กำลังทำงานเกี่ยวกับเรื่องนี้[33][34]. วิธีทางกลเชิงพาณิชย์อื่น ๆ รวมถึงการบีบอัดอากาศและการปั่น flywheels ขนาดใหญ่ที่แปลงพลังงานไฟฟ้าเป็นพลังงานจลน์, และค่อยเปลี่ยนกลับมาเป็นไฟฟ้าอีกครั้งเมื่อความต้องการไฟฟ้าขึ้นสู่ยอด.

การจัดเก็บไฟฟ้าพลังน้ำ

สถานีผลิตไฟฟ้าพลังน้ำ Sir Adam Beck ที่น้ำตก Niagara Falls, แคนาดา, ซึ่งรวมถึงอ่างเก็บน้ำขนาดใหญ่เป็นระบบการจัดเก็บไฟฟ้าพลังน้ำแบบสูบเพื่อผลิตไฟฟ้าเพิ่มเติม 174 เมกะวัตต์ในช่วงที่มีความต้องการขึ้นสูง

บทความหลัก: Pumped-storage hydroelectricity (PSH)

การจัดเก็บไฟฟ้าพลังน้ำแบบสูบทั่วโลกเป็นรูปแบบความจุที่ใหญ่ที่สุดในการจัดเก็บพลังงานกริดที่มีอยู่, และ, ณ เดือนมีนาคม 2012, สถาบันวิจัยพลังงานไฟฟ้า (EPRI) รายงานว่า PSH ขึ้นบัญชีไว้มากกว่า 99% ของความจุของที่เก็บขนาดใหญ่ทั่วโลก, คิดเป็นประมาณ 127,000 เมกะวัตต์[35]. PSH รายงานประสิทธิภาพการใช้พลังงานแตกต่างกันในทางปฏิบัติระหว่าง 70% ถึง 80%[35][36][37][38], กับบางส่วนที่อ้างว่าสูงถึง 87%[39].

ในช่วงเวลาที่ความต้องการใช้ไฟฟ้าต่ำ, กำลังการผลิตส่วนเกินจะถูกใช้ในการสูบน้ำจากอ่างเก็บน้ำที่อยู่ต่ำกว่าไปยังอ่างเก็บน้ำที่อยู่สูงกว่า. เมื่อมีความต้องการสูงขึ้น, น้ำจะถูกปล่อยออกมากลับลงมาสู่อ่างเก็บน้ำ (หรือทางน้ำไหล) ด้านล่าง ผ่านกังหัน, ทำการผลิตกระแสไฟฟ้า. ชุดเครื่องกำเนิดไฟฟ้า-กังหันกลับทางได้ (อังกฤษ: Reversible turbine-generator assemblies) จะทำหน้าที่เป็นทั้งเครื่องสูบน้ำและกังหัน (โดยปกติจะเป็นการออกแบบกังหันของฟรานซิส). การทำงานเกือบทั้งหมดใช้ความแตกต่างของความสูงระหว่างสองร่างกายตามธรรมชาติของน้ำหรืออ่างเก็บน้ำที่ประดิษฐ์ขึ้น. โรงงานที่เก็บกักแบบสูบอย่างเดียวจะเพียงแค่ย้ายน้ำจากอ่างเก็บน้ำหนึ่งไปยังอีกอ่างหนึ่งเท่านั้น, ในขณะที่ วิธีการ"ปั๊มกลับ" เป็นการผสมกันของโรงงานไฟฟ้าพลังน้ำแบบการจัดเก็บแบบสูบและโรงงานแบบธรรมดาที่ใช้กระแสไหลตามธรรมชาติ.

การจัดเก็บพลังงานอากาศแบบอัด

หัวรถจักรที่ใช้อากาศอัดถูกใช้งานภายในเหมืองระหว่างปี 1928 ถึงปี 1961.

บทความหลัก: Compressed air energy storage

การจัดเก็บพลังงานอากาศอัด (CAES) เป็นวิธีการที่เก็บพลังงานที่สร้างขึ้นในเวลาหนึ่งสำหรับการใช้งานในอีกเวลาหนึ่งโดยใช้อากาศที่ถูกบีบอัด. ในระดับสาธารณูปโภค, พลังงานที่สร้างขึ้นในช่วงระยะเวลาของความต้องการพลังงานต่ำ (off-peak) จะถูกปล่อยออกมาเพื่อตอบสนองในช่วงเวลาที่มีความต้องการสูงขึ้น (peak load) [40]. ระบบขนาดเล็กได้ถูกนำมาใช้ในการใช้งานเช่นการขับเคลื่อนหัวรถจักรในเหมือง. การใช้งานขนาดใหญ่จะต้องอนุรักษ์พลังงานความร้อนที่เกี่ยวข้องกับการบีบอัดอากาศ, การกระจายความร้อนจะลดประสิทธิภาพการจัดเก็บพลังงาน.

เทคโนโลยีสามารถจัดเก็บพลังงานในช่วง off-peak ที่มีต้นทุนต่ในรูปแบบของอากาศอัดในแหล่งเก็บกักใต้พื้นดิน. จากนั้น อากาศจะถูกปล่อยออกในช่วงเวลา peak load และ, โดยการใช้เทคโนโลยี CAES แบบเก่า, ถูกทำให้ร้อนด้วยไอเสียร้อนจากของกังหันการเผาไหม้แบบมาตรฐาน. อากาศที่ถูกทำให้ร้อนนี้จะถูกแปลงให้เป็นพลังงานผ่านไปที่กังหันส่วนขยายเพื่อผลิตไฟฟ้าต่อไป. โรงงานที่ใช้ CAES ได้อยู่ในการดำเนินงานในเมืองแมคอินทอช, รัฐอลาบามาตั้งแต่ปี 1991 และได้ทำงานประสบความสำเร็จ[41]. การนำไปใช้ในงานอื่น ๆ ก็สามารถเป็นไปได้. Walker Architects ได้ตีพิมพ์การใช้งานด้วยแก๊ส CO2 ครั้งแรก, ได้นำเสนอการใช้ CO2 ที่ถูกแยกตัว (อังกฤษ: sequestered carbondoxide) สำหรับการเก็บรักษาพลังงาน.

การบีบอัดของอากาศสร้างความร้อน; อากาศจะอุ่นขึ้นหลังจากการบีบอัด. การขยายตัวต้องใช้ความร้อน. ถ้าไม่มีความร้อนส่วนเกินที่เพิ่มเข้าไป, อากาศจะเย็นงมากหลังจากที่ขยายตัว. ถ้าความร้อนที่ถูกสร้างขึ้นในระหว่างการบีบอัดสามารถถูกจัดเก็บไว้ได้และถูกใช้ในระหว่างการขยายตัว, ประสิทธิภาพในการจัดเก็บจะดีขึ้นอย่างมาก.[10] มีสามวิธีที่ระบบ CAES สามารถจัดการกับความร้อน. การจัดเก็บอากาศสามารถเป็นแบบ adiabatic, diabatic หรือ isothermal. หลายบริษัทยังได้ทำงานออกแบบสำหรับยานพาหนะโดยใช้พลังงานอากาศอัด[42][43].

การจัดเก็บพลังงานแบบล้อตุนกำลัง

ส่วนประกอบหลักของล้อตุนกำลังแบบหนึ่ง

บทความหลัก: Flywheel energy storageการจัดเก็บพลังงานแบบล้อตุนกำลัง (FES) ทำงานโดยการเร่งความเร็วโรเตอร์ (flywheel) ให้มีความเร็วที่สูงมากและรักษาระดับพลังงานในระบบที่เรียกว่าพลังงานการหมุน (อังกฤษ: rotational energy) ด้วยการสูญเสียแรงเสียดทานน้อยที่สุดเท่าที่เป็นไปได้. เมื่อพลังงานถูกสกัดออกจากระบบ, ความเร็วในการหมุนของล้อตุนกำลังจะลดลงโดยเป็นผลมาจากหลักการของการอนุรักษ์พลังงาน; การเพิ่มพลังงานให้กับระบบส่งผลตามการเพิ่มความเร็วของล้อตุนกำลัง.

ระบบ FES ส่วนใหญ่ใช้ไฟฟ้าเพื่อเร่งและการชะลอความเร็วล้อตุนกำลัง, แต่อุปกรณ์ที่ใช้พลังงานกลโดยตรงกำลังถูกพัฒนาขึ้น[44].

ระบบ FES ขั้นสูงมีโรเตอร์ที่ทำจากวัสดุผสมคาร์บอนไฟเบอร์ที่มีความแข็งแรงสูง, แขวนไว้โดยแบริ่งแม่เหล็ก, และหมุนด้วยความเร็วตั้งแต่ 20,000 ถึง 50,000 รอบต่อนาทีในภาชนะสูญญากาศ[45]. flywheels ดังกล่าวสามารถทำความเร็วได้ในไม่กี่นาที - ถึงกำลังการผลิตพลังงานของพวกมันได้รวดเร็วมากกว่าบางรูปแบบอื่น ๆ ของการจัดเก็บ. ระบบแบบหนึ่งประกอบด้วยโรเตอร์หนึ่งตัวแขวนโดยแบริ่งอยู่ภายในห้องสูญญากาศเพื่อลดแรงเสียดทาน, เชื่อมต่อกับชุดมอเตอร์ไฟฟ้าและเครื่องกำเนิดไฟฟ้า.

เมื่อเทียบกับวิธีอื่น ๆ ในการจัดเก็บไฟฟ้า, ระบบ FES มีอายุการใช้งานนาน (นานหลายทศวรรษด้วยการบำรุงรักษาที่น้อยหรือไม่มีเลย[45]; อายุการใช้งานเต็มวงจรถูกอ้างว่า flywheels จะมีตั้งแต่เกิน 105 ถึง 107 รอบการใช้งาน[46]) ความหนาแน่นของพลังงานสูง (100-130 วัตต์·h/กก. หรือ 360-500 กิโลจูล/กิโลกรัม[46][47]) และกำลังไฟฟ้าส่งออกสูงสุดขนาดใหญ่.

การจัดเก็บพลังงานศักย์แรงโน้มถ่วง

แนวคิดใหม่กว่าที่เรียกว่าการจัดเก็บพลังงานศักย์หรือระบบการจัดเก็บพลังงานแรงโน้มถ่วง, ได้สร้างข้อเสนอบางอย่าง, อย่างน้อยหนึ่งในนั้นอยู่ภายใต้การพัฒนาที่ทำจริงจังในปี 2013 ในรัฐเนวาดาของสหรัฐในการร่วมมือกับผู้ประกอบการระบบอิสระแห่งแคลิฟอร์เนีย[48][49][50]. ในการนี้ การจัดเก็บไฟฟ้าพลังน้ำแบบสูบเป็นรูปแบบหนึ่งของการจัดเก็บพลังงานศักย์ที่จะใช้น้ำ, รูปแบบที่ใหม่กว่ามีการคาดการณ์ถึงการเคลื่อนไหวของมวลที่แข็ง (เช่น hopper rail cars หรือโบกี้ขนแร่หรือพืชผลหรือดินธรรมดาขับเคลื่อนด้วยหัวรถจักรไฟฟ้า) จากที่ต่ำขึ้นสู่ที่สูง. จากนั้นมวลดินจะถูกเก็บไว้ที่นั่นที่ระดับความสูงที่สูงกว่าโดยไม่มีการสูญเสียประสิทธิภาพจนกระทั่งมีความต้องการใช้ไฟฟ้าที่จะต้องส่งกลับเข้าไปในกริด, ณ จุดนั้นมวลดินเหล่านั้นจะถูกส่งกลับไปยังตำแหน่งการจัดเก็บในระดับความสูงเดิมของพวกมันเพื่อผลิตกระแสไฟฟ้าในระหว่างเคลื่อนที่ลงมาด้านล่าง[34]

ข้อดีของระบบดังกล่าว, ที่เรียกว่าการเก็บพลังงานจากรางขั้นสูง (อังกฤษ: Advanced Rail Energy Storage (ARES)), ได้แก่การจัดเก็บไม่มีกำหนดของพลังงานศักย์โดยไม่มีการสูญเสียประสิทธิภาพตามช่วงเวลา (แรงโน้มถ่วงไม่ลดขนาด), ค่าใช้จ่ายของวัสดุที่บรรทุกในโบกี้มีค่าต่ำเมื่อมีการใช้ดินหรือหิน, ไม่ได้ใช้แหล่งน้ำในพื้นที่ที่น้ำเป็นสิ่งที่หายาก, บวกกับ, เนื่องจากไม่ได้ใช้น้ำในโครงการนี้, ประสิทธิภาพจึงไม่สูญเสียไปเนื่องจากการระเหยในวันที่ร้อน, หนึ่งในประเด็นของประสิทธิภาพหลายอย่างที่พบกับการจัดเก็บแบบอ่างเก็บน้ำแบบลฃสูบส่วนใหญ่[51]. ณ ปี 2014 ARES ได้เริ่มต้นการวางแผนเบื้องแรกในโครงการเชิงพาณิชย์ในเนวาดาใกล้ชายแดนรัฐแคลิฟอร์เนีย, ร่วมกับ Valley Electric Association Inc.[34].

การจัดเก็บอุณหภูมิ

หอการสะสมอุณหภูมิประจำเขตจาก Theiss ใกล้เมือง Krems an der Donau ในออสเตรียด้านใต้ที่มีความจุความร้อน 2 กิกะวัตต์ชั่วโมง

บทความหลัก: Thermal energy storage และ Seasonal thermal energy storage

การจัดเก็บอุณหภูมิเป็นที่เก็บความร้อนชั่วคราวและปล่อยออกเพื่อใช้ในภายหลัง. ตัวอย่างหนึ่งของการเก็บอุณหภูมิคือการเก็บรักษาพลังงานความร้อนจากแสงอาทิตย์ในช่วงกลางวันเพื่อที่จะใช้ในเวลาต่อมาเพื่อให้ความร้อนในเวลากลางคืน. ในด้าน HVAC/R (heating, ventilating, and air conditioning/Refrigeration), ชนิดของโปรแกรมนี้ใช้เก็บอุณหภูมิเพื่อให้ความร้อนซึ่งเป็นเรื่องธรรมดาน้อยกว่าการใช้เก็บอุณหภูมิเพื่อให้ความเย็น. ตัวอย่างหนึ่งของการจัดเก็บของ "เย็น" และปล่อยออกเพื่อใช้ในภายหลังคือน้ำแข็งที่ทำในช่วงเวลากลางคืนสำหรับการใช้งานในช่วงเวลากลางวันที่ร้อน[6]. การเก็บรักษาน้ำแข็งนี้จะถูกทำขึ้นเมื่ออัตราค่าสาธารณูปโภคไฟฟ้ามีราคาถูกกว่า[52]. วิธีการนี้มักจะถูกเรียกว่าการให้ความเย็นช่วง "off-peak".

เมื่อถูกนำมาใช้ในโปรแกรมที่เหมาะสมด้วยการออกแบบที่เหมาะสม, ระบบให้ความเย็นช่วง off-peak สามารถลดค่าใช้จ่ายด้านพลังงานได้. Green Building Council ของสหรัฐอเมริกาได้มีการพัฒนาโปรแกรม ความเป็นผู้นำในการออกแบบพลังงานและสิ่งแวดล้อม (อังกฤษ: Leadership in Energy and Environmental Design (LEED)) เพื่อส่งเสริมการออกแบบอาคารประสิทธิภาพสูงที่จะช่วยปกป้องสภาพแวดล้อมของเรา. ระดับที่เพิ่มขึ้นของประสิทธิภาพการใช้พลังงานโดยการใช้ระบบให้ความเย็นช่วง off-peak อาจมีคุณสมบัติของสินเชื่อถ้ามีใบรับรองจาก LEED.

ข้อดีของการเก็บอุณหภูมิคือ:

  • อัตราค่าไฟฟ้าในเชิงพาณิชย์จะต่ำกว่าในเวลากลางคืน;
  • มันใช้พลังงานน้อยกว่าในการทำให้น้ำแข็งในเวลากลางคืนเพราะอุณหภูมิจะเย็นกว่า, จะประหยัดพลังงานจากโรงไฟฟ้าได้มากกว่า.
  • ระบบที่มีขนาดเล็กกว่า, ค่าใช้จ่ายน้อยกว่าสามารถทำงานของระบบขนาดใหญ่โดยใช้เวลาหลายชั่วโมงมากขึ้น[53].

เครื่องปรับอากาศเก็บน้ำแข็ง

บทความหลัก: Ice storage air conditioning

เครื่องปรับอากาศที่อยู่บนพื้นฐานของการเก็บน้ำแข็งสำหรับการจัดเก็บพลังงานอุณหภูมิได้กลายเป็นเทคโนโลยีเชิงพาณิชย์ที่ได้รับการยอมรับในศตวรรษที่ 21. สิ่งนี้ทำได้จริงในทางปฏิบัติเพราะความร้อนขนาดใหญ่ที่เกิดจากการละลายของน้ำ: การละลายของน้ำแข็งหนึ่งเมตริกตัน (ประมาณหนึ่งลูกบาศก์เมตร) สามารถจับพลังงานอุณหภูมิได้ 334 megajoules (MJ) (317,000 BTU).

การเปลี่ยนระบบปรับอากาศที่มีอยู่ไปใช้เครื่องปรับอากาศแบบการจัดเก็บน้ำแข็งจะเป็นวิธีการจัดเก็บพลังงานที่มีประสิทธิภาพด้านค่าใช้จ่ายวิธีหนึ่ง, หรือการใช้พลังงานลมส่วนเกินและแหล่งพลังงานที่ไม่แน่นอนอื่น ๆ เพื่อเก็บอากาศที่หนาวเหน็บไว้ใช้งานในเวลาต่อมา, อาจจะเป็นเวลาเดือนหลังจากนั้น. รูปแบบที่ใช้กันอย่างแพร่หลายของเทคโนโลยีนี้สามารถพบได้ในเครื่องปรับอากาศระบบน้ำแช่แข็ง (อังกฤษ: chilled water system) ในอาคารขนาดใหญ่ในสถาบันการศึกษา. ระบบปรับอากาศ, โดยเฉพาะอย่างยิ่งในอาคารพาณิชย์, เป็นผู้บริโภคไฟฟ้าที่ใหญ่ที่สุดที่สามารถเห็นได้ในวันที่มีอากาศร้อนในประเทศต่าง ๆ. ในโปรแกรมนี้, ตัวทำความเย็นจัด (อังกฤษ: chiller) มาตรฐานจะทำงานในเวลากลางคืนเพื่อผลิตกองน้ำแข็ง. จากนั้น น้ำก็จะไหลเวียนผ่านกองน้ำแข็งนี้ในช่วงเวลากลางวันเพื่อผลิตน้ำเย็นจัดที่ปกติจะเป็นเอาต์พุตของ chiller ในเวลากลางวัน.

ระบบจัดเก็บบางส่วนช่วยลดการลงทุนโดยให้ชิลเลอร์ทำงานเกือบตลอด 24 ชั่วโมงต่อวัน. ในเวลากลางคืน, พวกมันผลิตน้ำแข็งเก็บเอาไว้และในช่วงเวลากลางวันพวกมันทำให้น้ำเย็นจัดสำหรับระบบเครื่องปรับอากาศ. น้ำที่ไหลเวียนำผ่านน้ำแข็งที่กำลังละลายจะช่วยเสริม การผลิตความเย็น. ระบบดังกล่าวมักจะทำงานในโหมดการทำน้ำแข็ง 16-18 ชั่วโมงต่อวันและในโหมดน้ำแข็งละลายหกชั่วโมงต่อวัน. ใช้จ่ายด้านทุนจะลดลงเพราะชิลเลอร์สามารถมีขนาดเพียง 40-50% ของขนาดที่จำเป็นสำหรับการออกแบบทั่วไป. การเก็บน้ำแข็งก็มักจะเพียงพอสำหรับการปล่อยความร้อนเพียงครึ่งวัน.

ระบบจัดเก็บเต็มรูปแบบจะช่วยลดค่าใช้จ่ายของพลังงานที่ดำเนินการระบบนั้นโดยการปิดชิลเลอร์โดยสิ้นเชิงในช่วงเวลาโหลดสูงสุด. ต้นทุนจะสูงกว่า, เพราะระบบดังกล่าวต้องใช้ชิลเลอร์ค่อนข้างใหญ่กว่าชิลเลอร์จากระบบจัดเก็บบางส่วนและจากระบบการจัดเก็บน้ำแข็งขนาดใหญ่

ไฟฟ้าเคมี

แถวของแบตเตอรี่แบบชาร์จไฟได้ที่ใช้เป็นแหล่งจ่ายไฟสำรองในศูนย์ข้อมูล

แบตเตอรี่แบบชาร์จไฟได้

บทความหลัก: Rechargeable battery

แบตเตอรี่แบบชาร์จไฟได้, หรือเรียกว่า storage battery หรือ accumulator, เป็นแบตเตอรี่ไฟฟ้าชนิดหนึ่ง. มันประกอบด้วยเซลล์ไฟฟ้าเคมีหนึ่งชุดหรือมากกว่า, และเป็นต้วสะสมพลังงานประเภทหนึ่ง. มันเป็นที่รู้จักกันในนาม 'เซลล์รอง' เพราะปฏิกิริยาไฟฟ้าเคมีของมันเป็นแบบไฟฟ้าย้อนกลับ. แบตเตอรี่ที่ชาร์จไฟได้มาในรูปทรงและขนาดที่แตกต่างกัน, ตั้งแต่เซลล์ขนาดกระดุมจนถึงระบบเมกะวัตต์ที่เชื่อมต่อเพื่อรักษาเสถียรภาพของเครือข่ายการกระจายไฟฟ้า. ส่วนผสมของสารเคมีที่แตกต่างกันหลายอย่างถูกนำมาใช้โดยทั่วไป, ได้แก่ ตะกั่ว-กรด, นิกเกิลแคดเมียม (NiCd), นิกเกิลเมททัลไฮไดรด์ (NiMH), ลิเธียมไอออน (Li-ion), และพอลิเมอลิเธียมไอออน (Li-ion polymer).

แบตเตอรี่แบบชาร์จไฟได้มีค่าใช้จ่ายการใช้ทั้งหมดและผลกระทบต่อสิ่งแวดล้อมต่ำกว่าแบตเตอรี่ที่ใช้แล้วทิ้ง. แบตเตอรี่แบบชาร์จไฟได้บางประเภทมีขนาดเดียวกันกับประเภทใช้แล้วทิ้ง. แบตเตอรี่แบบชาร์จไฟได้มีค่าใช้จ่ายเริ่มต้นสูงกว่า แต่สามารถชาร์จใหม่ด้วยราคามากและใช้ได้หลายครั้ง.

สารเคมีในแบตเตอรี่แบบชาร์จไฟได้ที่พบบ่อย ได้แก่ :

  • แบตเตอรี่ Lead-acid: แบตเตอรี่แบบตะกั่ว-กรดยังคงถือส่วนแบ่งการตลาดที่ใหญ่ที่สุดสำหรับผลิตภัณฑ์จัดเก็บไฟฟ้าทั้งหมดในวันนี้. เซลล์ตะกั่ว-กรดตัวเดียวผลิตประมาณ 2V เมื่อชาร์จเต็ม. ในสถานะที่ชาร์จเต็ม ขั้วไฟฟ้าลบโลหะตะกั่วและขั้วไฟฟ้าบวกตะกั่วซัลเฟตจะถูกแช่อยู่ในอิเล็กโทรไลท์กำมะถัน (H2SO4) เจือจาง. ในกระบวนการปล่อยกระแส อิเล็กตรอนจะผลักออกจากเซลล์เมื่อตะกั่วซัลเฟตขึ้นรูปแบบที่ขั้วลบในขณะที่อิเล็กโทรไลท์จะลดลงเป็นน้ำ.
  • แบตเตอรี่นิกเกิลแคดเมียม (NiCd) : ใช้นิกเกิลออกไซด์ไฮดรอกไซและโลหะแคดเมียมเป็นเป็นขั้วไฟฟ้า. แคดเมียมเป็นองค์ประกอบที่เป็นพิษ, และเป็นสิ่งต้องห้ามสำหรับการใช้งานส่วนใหญ่จากสหภาพยุโรปในปี 2004. แบตเตอรี่นิกเกิลแคดเมียมได้รับการแทนที่เกือบสมบูรณ์โดยนิกเกิลเมททัลไฮไดรด์ (NiMH)
  • แบตเตอรี่นิกเกิลเมททัลไฮไดรด์ (NiMH) : ประเภทเชิงพาณิชย์ครั้งแรกมีในปี 1989[54]. ตอนนี้พวกมันเป็นประเภทผู้บริโภคทั่วไปและประเภทอุตสาหกรรม. แบตเตอรี่มีขั้วลบเป็นโลหะผสมดูดซับไฮโดรเจนแทนแคดเมียม.
  • แบตเตอรี่ลิเธียมไอออน: เทคโนโลยีที่อยู่เบื้องหลังแบตเตอรี่ลิเธียมไอออนยังไม่ได้ถึงจุดที่เติบโตเต็มที่. อย่างไรก็ตามแบตเตอรี่เป็นชนิดของทางเลือกในอุปกรณ์อิเล็กทรอนิกส์จำนวนมากและมีอัตราส่วนพลังงานต่อมวลที่ดีที่สุดชนิดหนึ่งและมีการสูญเสียประจุช้ามากเมื่อไม่ใช้งาน.
  • แบตเตอรี่ลิเธียมไอออน: แบตเตอรี่เหล่านี้มีน้ำหนักเบาและสามารถทำให้มีรูปทรงตามที่ต้องการ
แบตเตอรี่ไหล

บทความหลัก: Flow battery และ Vanadium redox battery

แบตเตอรี่ไหลเป็นชนิดของแบตเตอรี่แบบชาร์จไฟได้ที่ความสามารถในการชาร์จไฟเกิดขึ้นจากสององค์ประกอบทางเคมีที่ละลายในของเหลวที่อยู่ภายในระบบและคั่นด้วยเมมเบรน. การแลกเปลี่ยนไอออน (ทำให้เกิดการไหลของกระแสไฟฟ้า) เกิดขึ้นผ่านเมมเบรนในขณะที่ของเหลวทั้งสองหมุนเวียนในพื้นที่ของตนเองตามลำดับ. แรงดันไฟฟ้าของเซลล์จะถูกกำหนดทางเคมีโดยสมการของ Nernst และมีช่วงการใช้งานจริงตั้งแต่ 1.0-2.2 โวลต์.

แบตเตอรี่ไหลมีความคล้ายคลึงด้านเทคนิคกับทั้งเซลล์เชื้อเพลิงและเซลล์สะสมไฟฟ้าเคมี (ความสามารถในการเปลี่ยนกลับทางด้านเคมีไฟฟ้า). ในขณะที่มันมีข้อได้เปรียบทางเทคนิคเช่นถังของเหลวที่อาจแยกได้และอายุยืนยาวเกือบไม่จำกัดเหนือกว่าแบตเตอรีแบบชาร์จไฟได้ธรรมดาส่วนใหญ่, การใช้งานในปัจจุบันเมื่อเปรียบเทียบกันแล้วมีประสิทธิภาพน้อยกว่าและต้องใช้อุปกรณ์อิเล็กทรอนิกส์ที่ซับซ้อนมากกว่า. ชนิดใหม่กว่าของแบตเตอรี่ไหลกำลังมีการพัฒนาเพื่อให้สามารถจัดเก็บพลังงานจำนวนมากได้, เนื่องจากการเพิ่มกำลังการผลิตพลังงานโดยรวมของระบบ (มีค่าเป็น MWh) โดยทั่วไปต้องใช้เพียงการเพิ่มขึ้นของขนาดของอ่างเก็บสารเคมีที่เป็นของเหลวเท่านั้น.

ตัวเก็บประจุยิ่งยวด

หนึ่งของกลุ่มรถโดยสารที่เรียกว่า electric capabuses ที่ขับเคลื่อนโดยตัวเก็บประจุยิ่งยวด, ที่สถานีชาร์จอย่างรวดเร็ว, ให้บริการในช่วง Expo 2010 ในเซี่ยงไฮ้, ประเทศจีน. รางชาร์จสามารถมองเห็นที่แขวนอยู่เหนือรถบัส

บทความหลัก: ตัวเก็บประจุยิ่งยวด

ตัวเก็บประจุยิ่งยวด, หรือที่เรียกว่าตัวเก็บประจุไฟฟ้าสองชั้น (อังกฤษ: electric double-layer capacitor (EDLC)) หรือ Ultracapacitors, เป็นคำทั่วไปสำหรับครอบครัวของตัวเก็บประจุไฟฟ้าที่ใช้เคมีไฟฟ้า[55]. ตัวเก็บประจุยิ่งยวดไม่ได้มีสาร dielectric ที่เป็นของแข็งธรรมดา. ค่าความจุของตัวเก็บประจุไฟฟ้าที่ใช้เคมีไฟฟ้าจะถูกกำหนดโดยสองหลักการจัดเก็บ, ซึ่งทั้งสองมีส่วนร่วมแบบแยกกันไม่ออกสำหรับค่าความจุทั้งหมด[56][57][58]:

ตัวเก็บประจุยิ่งยวดลดช่องว่างระหว่างตัวเก็บประจุแบบธรรมดาและแบตเตอรี่แบบชาร์จไฟได้. พวกมันเก็บพลังงานส่วนใหญ่ต่อหน่วยปริมาตรหรือมวล (ความหนาแน่นพลังงาน) ท่ามกลางตัวเก็บประจุอื่น ๆ. พวกมันรองรับได้ถึง 10,000 Farads/1.2 โวลต์[59], สูงถึง 10,000 เท่าของตัวเก็บประจุแบบ electrolytic, แต่ส่งมอบกำลังงานหรือรับเข้าน้อยกว่าครึ่งหนึ่งของกำลังงานต่อหน่วยเวลา (ความหนาแน่นของกำลังงาน) [55].

ในทางตรงกันข้าม, ในขณะที่ตัวเก็บประจุยิ่งยวดมีความหนาแน่นพลังงานประมาณ 10% ของแบตเตอรี่ทั่วไป, ความหนาแน่นของกำลังงานของพวกมันโดยทั่วไปใหญ่กว่า 10-100 เท่า. นี่ส่งผลให้เวลาการชาร์จ/ดีสชาร์จสั้นกว่าแบตเตอรี่มาก ๆ. นอกจากนี้พวกมันยังอดทนต่อจำนวนการชาร์จ/ดีสชาร์จได้มากกว่าแบตเตอรี่หลายเท่า.

ตัวเก็บประจุยิ่งยวดสนับสนุนการใช้งานที่หลากหลาย รวมถึง:

  • จ่ายกระแสที่ต่ำให้กับการสำรองข้อมูลในหน่วยความจำแบบ static random-access memory (SRAM)
  • ให้พลังงานสำหรับรถยนต์, รถโดยสาร, รถไฟ, รถเครนและลิฟท์, รวมถึงการกู้คืนพลังงานจากการเบรก, การจัดเก็บพลังงานระยะสั้นและการส่งพลังงานแบบ burst-mode

UltraBattery

บทความหลัก: UltraBattery

UltraBattery คือเซลล์ตะกั่ว-กรดแบบไฮบริดและ ultracapacitor ที่ใช้คาร์บอน (หรือตัวเก็บประจุยิ่งยวด) คิดค้นโดยหน่วยงานวิจัยแห่งชาติของออสเตรเลีย, องค์การวิจัยวิทยาศาสตร์และอุตสาหกรรมเครือจักรภพ (CSIRO). เซลล์ตะกั่ว-กรดและ ultracapacitor ใช้อิเล็กโทรไลท์กรดกำมะถันร่วกันและทั้งสองอย่างจะถูกบรรจุลงในเซลล์กายภาพเดียวกัน[60]. UltraBattery สามารถถูกผลิตให้มีลักษณะทางกายภาพและทางไฟฟ้าคล้ายกับแบตเตอรี่ตะกั่ว-กรดแบบเดิมทำให้สามารถใช้แทนแบตเตอรี่แบบตะกั่ว-กรดที่ใช้งานอยู่จำนวนมากได้อย่างมีประสิทธิภาพด้านค่าใช้จ่าย (อังกฤษ: cost effective) ด้วยเทคโนโลยีของ UltraBattery.

ความแตกต่างที่สำคัญระหว่างแบตเตอรี่ตะกั่ว-กรดธรรมดากับเทคโนโลยี UltraBattery ก็คือ UltraBattery ทำงานเหมือน ultracapacitor เมื่อจำเป็นและเหมือนเซลล์ตะกั่ว-กรดในเวลาอื่น, หมายความว่ามันสามารถทำงานได้ในช่วงกว้างมากของการใช้งาน, วงจรการใช้งานอย่างต่อเนื่องและการชาร์จ/ดีสชาร์จอย่างรวดเร็วเป็นสิ่งจำเป็นสำหรับการใช้งานเช่นการปรับให้เรียบของพลังงานทดแทน, การทำให้ระบบกริดมั่นคง, ยานพาหนะไฟฟ้าและไฮบริดไฟฟ้าสามารถมีผลที่เป็นอันตรายเนื่องจากแบตเตอรี่เคมี แต่จะได้รับการจัดการอย่างดีจากคุณภาพของ ultracapacitive ของเทคโนโลยี UltraBattery.

UltraBattery จะยอมอดทนต่อระดับการชาร์จและดีสชาร์จที่สูงและจำนวนรอบการใช้งานที่สูงมากตลอดช่วงชีวิตของมัน, ซึ่งเหนือกว่าเซลล์ตะกั่ว-กรดที่มีมาก่อนมาก[61]. ในการทดสอบรถไฟฟ้าไฮบริด, มีการใช้งานนับล้านวงรอบ[62]. UltraBattery ยังมีความอดทนอย่างสูงใจต่อผลกระทบจากเกลือของกรดกำมะถัน (อังกฤษ: sulfation) เมื่อเทียบกับเซลล์ตะกั่ว-กรดแบบดั้งเดิม[63]. นี่หมายความว่ามันสามารถทำงานได้อย่างต่อเนื่องในสภาวะของการชาร์จบางส่วนในขณะที่แบตเตอรี่ตะกั่ว-กรดแบบดั้งเดิมโดยทั่วไปจะถูกชะลอไว้ที่การชาร์จจนเต็มระหว่างการดืสชาร์จ. ปกติมันจะไม่มีประสิทธิภาพทางไฟฟ้าในการชาร์จแบตเตอรี่ตะกั่ว-กรดจนเต็มอย่างนั้นโดยการลดเวลาในภูมิภาคด้านบนของการชาร์จ. UltraBattery บรรลุประสิทธิภาพสูงปกติระหว่าง 85-95% DC-DC[64].

เทคโนโลยีได้รับการติดตั้งในประเทศออสเตรเลียและสหรัฐอเมริกาในระดับเมกะวัตต์เพื่อใช้ในการควบคุมความถี่และการทำพลังงานหมุนเวียนให้เรียบ.

สารเคมีอื่น ๆ

ไฮโดรเจน

แผนภูมิภาพวาดระยะเวลาและความสามารถในการใช้พลังงานของเทคโนโลยีการจัดเก็บพลังงานแบบต่าง ๆ รวมทั้ง power to gas (ที่ด้านขวาบน). [ต้องการอ้างอิง]

บทความหลัก: เศรษฐกิจไฮโดรเจน

ไฮโดรเจนได้กำลังถูกพัฒนาเช่นกันให้เป็นตัวกลางในการจัดเก็บพลังงานไฟฟ้า. ไฮโดรเจนไม่ได้เป็นแหล่งพลังงานหลัก, แต่เป็นวิธีการจัดเก็บพลังงานแบบพกพาแบบหนึ่ง, เพราะตอนแรกมันจะต้องถูกผลิตโดยแหล่งพลังงานอื่น ๆ เพื่อที่จะนำมาใช้. อย่างไรก็ตาม, ในฐานะที่เป็นตัวกลางในการจัดเก็บ, มันก็อาจจะเป็นปัจจัยสำคัญในการใช้พลังงานทดแทน ดูการเก็บรักษาไฮโดรเจน.

ด้วยพลังงานหมุนเวียนที่มาเป็นระยะ ๆ เช่นพลังงานแสงอาทิตย์และพลังงานลม, ผลผลิตอาจถูกป้อนโดยตรงให้กับกริดไฟฟ้า. ที่ความต้องการใช้งานของกริดต่ำกว่า 20%, ปริมาณขนาดนี้ไม่ได้เปลี่ยนเศรษฐศาสตร์อย่างรุนแรง; แต่ต้องเกินกว่าประมาณ 20% ของความต้องการทั้งหมด[ต้องการอ้างอิง], การจัดเก็บภายนอกจึงมีความสำคัญ[65]. ถ้าแหล่งพลังงานเหล่านี้ถูกนำไปใช้สำหรับการผลิตไฟฟ้าเพื่อที่จะผลิตไฮโดรเจนแล้ว, พวกมันก็สามารถนำไปใช้ประโยชน์ได้อย่างเต็มที่เมื่อใดก็ตามที่มันพร้อมใช้งาน, ถ้ามองในแง่โอกาส. พูดกว้าง ๆ, มันไม่สำคัญที่พวกมันจะเข้ามาหรือออกไปเมื่อไร, ไฮโดรเจนจะถูกเก็บไว้อย่างเรียบง่ายและถูกใช้ตามความจำเป็น. ชุมชนหนึ่งได้วางโครงการนำร่องโดยใช้กังหันลมและเครื่องกำเนิดไฟฟ้าไฮโดรเจนได้ถูกดำเนินการจากปี 2007 เป็นเวลาห้าปีในชุมชนที่ห่างไกลของ Ramea, Newfoundland and Labrador[66]. โครงการที่คล้ายกันได้ดำเนินการมาตั้งแต่ปี 2004 ที่ Utsira, เทศบาลเล็ก ๆ บนเกาะที่นอร์เวย์.

การสูญเสียพลังงานเกี่ยวข้องในวงรอบการจัดเก็บไฮโดรเจนของการผลิตไฮโดรเจนสำหรับการใช้งานกับยานพาหนะด้วย electrolysis ของน้ำ, การเปลี่ยนให้เป็นของเหลวหรือการบีบอัด, และการแปลงกลับไปเป็นไฟฟ้า[67] และวงรอบการจัดเก็บไฮโดรเจนของการผลิตไฮโดรเจนสำหรับการประยุกต์ใช้เซลล์เชื้อเพลิงที่อยู่กับที่ (อังกฤษ: stationary fuel cell applications) เหมือน Micro combined heat and power (MicroCHP) ที่ 93 %[68] ด้วย biohydrogen หรือการผลิตไฮโดรเจนทางชีวภาพ (ด้วยสาหร่าย), และการแปลงให้เป็นกระแสไฟฟ้า

ประมาณ 50 กิโลวัตต์·h (180 MJ) ของพลังงานแสงอาทิตย์เป็นสิ่งจำเป็นในการผลิตหนึ่งกิโลกรัมของไฮโดรเจน, ดังนั้นต้นทุนของไฟฟ้าชัดเจนว่าเป็นสิ่งสำคัญยิ่ง, แม้ว่าสำหรับการใช้ไฮโดรเจนเป็นอย่างอื่นนอกเหนือจากการจัดเก็บเพื่อการผลิตไฟฟ้า. ที่ $ 0.03/kWh, อัตราสายไฟฟ้าแรงสูงทั่วไปช่วง off-peak ในประเทศสหรัฐอเมริกา, นี่หมายถึงไฮโดรเจนมีค่าใช้จ่าย $ 1.50/กิโลกรัมสำหรับการผลิตไฟฟ้า, เทียบเท่ากับ $ 1.50/แกลลอนสำหรับน้ำมันเบนซินถ้าถูกใช้ในเซลล์เชื้อเพลิงยานพาหนะ. ค่าใช้จ่ายอื่น ๆ จะรวมถึงโรงงาน electrolyzer, เครื่องอัดไฮโดรเจนหรือเครื่องเปลี่ยนให้เป็นของเหลว, การจัดเก็บและการขนส่ง, ซึ่งจะมีความสำคัญ[ต้องการอ้างอิง].

การจัดเก็บไฮโดรเจนใต้ดิน

การจัดเก็บไฮโดรเจนใต้ดินคือการจัดเก็บไฮโดรเจนในถ้ำใต้ดิน, โดมเกลือและบ่อน้ำมันและก๊าซที่แห้งแล้ว[69][70]. ไฮโดรเจนในรูปของแก๊สปริมาณขนาดใหญ่ถูกจัดเก็บไว้ในถ้ำใต้ดินโดย Imperial Chemical Industries (ICI) เป็นเวลาหลายปีโดยไม่มีความยุ่งยากใด ๆ [71]. โครงการยุโรป Hyunder ระบุในปี 2013 ว่าสำหรับการจัดเก็บพลังงานลมและพลังงานแสงอาทิตย์, ถ้ำเพิ่มเติมจำนวน 85 ถ้ำจะต้องใช้เพราะมันไม่สามารถแทนที่โดยการจัดเก็บไฟฟ้าพลังน้ำโดยวิธีสูบ (PHES) และระบบการจัดเก็บอากาศอัด (CAES) [72].

พลังงานให้เป็นแก๊ส

บทความหลัก: Power to gas

Power to gas เป็นเทคโนโลยีที่แปลงพลังงานไฟฟ้าที่ใช้เชื้อเพลิงแก๊ส. มีสามวิธีที่ใช้กันอยู่ในปัจจุบัน; ทั้งหมดใช้ไฟฟ้าแยกน้ำให้เป็นไฮโดรเจนและออกซิเจนโดยวิธีการอิเล็กโทรไลซิส.

ในวิธีการแรก, ไฮโดรเจนที่ได้จะถูกฉีดเข้าไปในกริดก๊าซธรรมชาติหรือถูกนำไปใช้ในการขนส่งหรืออุตสาหกรรม. วิธีที่สองคือการรวมไฮโดรเจนกับก๊าซคาร์บอนไดออกไซด์และแปลงสองก๊าซให้เป็นมีเทน (ดูก๊าซธรรมชาติ) โดยใช้ปฏิกิริยา methanation เช่นปฏิกิริยา Sabatier หรือ methanation ทางชีวภาพทำให้เกิดการสูญเสียการแปลงพลังงานส่วนเกินที่ 8%. จากนั้น ก๊าซมีเทนอาจจะถูกป้อนให้กับกริดของก๊าซธรรมชาติ. วิธีที่สามใช้ก๊าซที่ได้จากเครื่องผลิตก๊าซไม้ (อังกฤษ: wood gas generator) หรือโรงงานก๊าซชีวภาพ, หลังจาก ที่ต้วเพิ่มสมรรถนะของก๊าซชีวภาพถูกผสมเข้ากับไฮโดรเจนที่ผลิตจาก Electrolyzer, เพื่อยกระดับคุณภาพของก๊าซชีวภาพ.

จากนั้น พลังงานส่วนเกินหรือพลังงานช่วง off–peak ที่สร้างโดยกังหันลมหรือแผงเซลล์แสงอาทิตย์จะสามารถนำไปใช้สำหรับสร้างความสมดุลของโหลดในกริดพลังงาน. การใช้ระบบก๊าซธรรมชาติที่มีอยู่สำหรับไฮโดรเจน, ผู้ผลิตเซลล์เชื้อเพลิงเช่น Hydrogenics และผู้จัดจำหน่ายก๊าซธรรมชาติเช่น Enbridge ได้ร่วมมือกันในการพัฒนาระบบ power to gas ดังกล่าวในแคนาดา[73].

ไฮโดรเจนสามารถเก็บไว้ในเครือข่ายท่อส่งก๊าซธรรมชาติ. ก่อนที่จะเปลี่ยนไปใช้ก๊าซธรรมชาติ, เครือข่ายก๊าซของเยอรมันได้ดำเนินการโดยใช้ towngas, ซึ่งส่วนใหญ่ประกอบด้วยไฮโดรเจน. ความจุในการจัดเก็บของเครือข่ายก๊าซธรรมชาติเยอรมัน, ซึ่งก็ประกอบด้วยถ้ำที่มนุษย์สร้างขึ้นมากมาย (ถ้ำเทียมที่สร้างโดยการทำเหมืองแร่), มีมากกว่า 200,000 GW·ชั่วโมง, ซึ่งเพียงพอสำหรับความต้องการพลังงานหลายเดือน. จากการเปรียบเทียบ, ความสามารถของโรงเก็บพลังงานแบบสูบทั้งหมดของมีเพียงประมาณ 40 GW·ชั่วโมงเท่านั้น. การขนส่งพลังงานผ่านทางเครือข่ายก๊าซจะสูญเสียน้อยมาก (<0.1%) กว่าในเครือข่ายสายส่ง (8%) (ยกเว้นระบบสายส่งกระแสตรงความดันสูง). การใช้ระบบท่อส่งก๊าซธรรมชาติที่มีอยู่แล้วสำหรับไฮโดรเจนได้รับการศึกษาโดย NaturalHy[74].

เชื้อเพลิงชีวภาพ

บทความหลัก: biofuel

เชื้อเพลิงชีวภาพต่าง ๆ เช่นไบโอดีเซล, น้ำมันพืชตรง, เชื้อเพลิงแอลกอฮอล์, หรือชีวมวลสามารถใช้แทนเชื้อเพลิงไฮโดรคาร์บอนได้. กระบวนการทางเคมีหลายอย่างสามารถแปลงคาร์บอนและไฮโดรเจนในถ่านหิน, ก๊าซธรรมชาติ, พืชและสัตว์ (ชีวมวล), และขยะอินทรีย์ให้เป็นสารไฮโดรคาร์บอนสั้นเหมาะที่จะใช้แทนเชื้อเพลิงไฮโดรคาร์บอนที่มีอยู่. ตัวอย่างเช่นดีเซลแบบ Fischer-Tropsch, เมทานอล, ไดเมทิลอีเทอร์, หรือ ซินแก๊ส. แหล่งดีเซลนี้ถูกใช้อย่างกว้างขวางในสงครามโลกครั้งที่สองในประเทศเยอรมนี, ที่การเข้าถึงแหล่งจ่ายน้ำมันดิบถูกจำกัด. วันนี้แอฟริกาใต้ผลิตส่วนใหญ่ของดีเซลของประเทศจากถ่านหินด้วยเหตุผลที่คล้ายกัน[75]. ราคาน้ำมันในระยะยาวเหนือ US$ 35/บาร์เรลอาจทำให้เชื้อเพลิงเหลวสังเคราะห์ดังกล่าวประหยัดในกระบวนการผลิตขนาดใหญ่ (ดูถ่านหิน). บางส่วนของพลังงานในต้นฉบับเดิมได้หายไปในขั้นตอนการแปลง. ในทางประวัติศาสตร์, ต้วถ่านหินเองได้ถูกใช้โดยตรงเพื่อวัตถุประสงค์ในการขนส่งด้วยยานพาหนะและเรือที่ใช้เครื่องยนต์ไอน้ำ. นอกจากนี้ ก๊าซธรรมชาติอัดยังถูกใช้เป็นเชื้อเพลิงอีกด้วย, เช่นรถเมล์กับบางหน่วยงานขนส่งมวลชน.

ก๊าซมีเทน

บทความหลัก: Substitute natural gas

ก๊าซมีเทนเป็นสารไฮโดรคาร์บอนที่ธรรมดาที่สุดที่มีสูตรโมเลกุล CH4. ก๊าซมีเทนสามารถผลิตได้จากพลังงานไฟฟ้าโดยการใช้เทคโนโลยี power to gas[76]. ก๊าซมีเทนจะถูกเก็บไว้ง่ายกว่าไฮโดรเจนและการขนส่ง, การจัดเก็บและโครงสร้างพื้นฐานการเผาไหม้ (ท่อส่ง, gasometers, โรงไฟฟ้า) มีความมั่นคงแล้ว.

ก๊าซธรรมชาติสังเคราะห์ (SNG) จะถูกสร้างขึ้นในกระบวนการหลายขั้นตอน, เริ่มต้นเมื่อไฮโดรเจนและออกซิเจนถูกผลิตขึ้นระหว่างอิเล็กโทรไลซิสของน้ำ. ไฮโดรเจนก็จะทำปฏิกิริยากับก๊าซคาร์บอนไดออกไซด์ในกระบวนการ Sabatier, ผลิตก๊าซมีเทนและน้ำ. ก๊าซมีเทนสามารถถูกจัดเก็บและถูกใช้ในการผลิตกระแสไฟฟ้าในภายหลัง. น้ำที่ผลิตได้จะถูกนำกลับมาใช้ใหม่ในขั้นตอนอิเล็กโทรไลซิส, เป็นการลดความจำเป็นสำหรับน้ำบริสุทธิ์ใหม่เพิ่มเติม. ในขั้นตอนอิเล็กโทรไลซิส ออกซิเจนก็จะถูกเก็บไว้สำหรับการเผาไหม้ก๊าซมีเทนในสภาพแวดล้อมของออกซิเจนบริสุทธิ์ที่โรงไฟฟ้าที่อยู่ติดกัน, เป็นการกำจัดไนโตรเจนออกไซด์.

ในการเผาไหม้ของก๊าซมีเทน, ก๊าซคาร์บอนไดออกไซด์ (CO2) และน้ำจะถูกผลิตขึ้น. ก๊าซคาร์บอนไดออกไซด์ที่สร้างขึ้นจะถูกนำกลับมาใช้ใหม่เพื่อเพิ่มกระบวนการ Sabatier และน้ำจะถูกนำกลับมาใช้ใหม่ในขั้นตอนอิเล็กโทรไลซิส. ก๊าซคาร์บอนไดออกไซด์ที่เกิดจากการเผาไหม้ก๊าซมีเทนจะหันกลับไปเป็นมีเทน, การผลิตจึงไม่มีการปล่อยก๊าซเรือนกระจก. การผลิต, การจัดเก็บและการเผาไหม้ที่อยู่ติดกันของก๊าซมีเทนจะรีไซเคิลผลิตภัณฑ์ทั้งหมดของปฏิกิริยา, เป็นการสร้างวัฏจักรคาร์บอนต่ำ.

ดังนั้น CO2 จึงจะเป็นทรัพยากรที่มีค่าทางเศรษฐกิจในฐานะที่เป็นส่วนประกอบหนึ่งของเวกเตอร์การจัดเก็บพลังงาน, ไม่ใช่เสียค่าใช้จ่ายเหมือนกับการจับและการเก็บรักษาคาร์บอน.

อะลูมิเนียม, โบรอน, ซิลิคอนและสังกะสี

อะลูมิเนียม[77], โบรอน[78], ซิลิกอน[79], ลิเธียม, และสังกะสี[80] ได้รับการเสนอเป็นโซลูชั่นการจัดเก็บพลังงาน.

วิธีการทางไฟฟ้า

ตัวเก็บประจุ

บทความหลัก: ตัวเก็บประจุ

ตัวเก็บประจุแบบ Mylar ฟิล์มเติมด้วยน้ำมันนี้มีค่าความเหนี่ยวนำที่ต่ำมากและความต้านทานต่ำ, เพื่อให้กำลังสูง (70 เมกะวัตต์) และดีสชาร์จด้วยความเร็วสูงมาก (1.2 มิลลิวินาที) ที่จำเป็นในใช้งานกับ dye laser

ตัวเก็บประจุ (แต่เดิมเรียกว่า 'คอนเดนเซอร์') เป็นชิ้นส่วนไฟฟ้าสองขั้วแบบพาสซีฟถูกใช้ในการเก็บพลังงานไฟฟ้าสถิตย์ในสนามไฟฟ้า. รูปแบบของตัวเก็บประจุในทางปฏิบัติแตกต่างกัน, แต่ทั้งหมดประกอบด้วยอย่างน้อยสองตัวนำไฟฟ้า (สองแผ่น) แยกจากกันโดยมีสารไดอิเล็กทริก (เช่นฉนวน) อยู่ตรงกลาง. ตัวเก็บประจุสามารถเก็บพลังงานไฟฟ้าเมื่อตัดการเชื่อมต่อออกจากวงจรการชาร์จของมัน, ดังนั้นมันจึงสามารถนำมาใช้เหมือนกับแบตเตอรี่ชั่วคราว, หรือเหมือนประเภทอื่น ๆ ของระบบการจัดเก็บพลังงานที่ชาร์จไฟใหม่ได้[81]. ตัวเก็บประจุยังเป็นที่นิยมใช้ในอุปกรณ์อิเล็กทรอนิกส์เพื่อรักษาแหล่งจ่ายไฟในขณะที่ทำการเปลี่ยนแบตเตอรี่ (ซึ่งช่วยป้องกันการสูญหายของข้อมูลในหน่วยความจำระเหย). ตัวเก็บประจุแบบธรรมดาให้ความหนาแน่นของพลังงานน้อยกว่า 360 จูลต่อกิโลกรัมในขณะที่แบตเตอรี่อัลคาไลน์ทั่วไปมีความหนาแน่นของ 590 กิโลจูล/กิโลกรัม.

ไม่เหมือนตัวต้านทาน, ตัวเก็บประจุไม่กระจายพลังงาน, แทนที่จะกระจาย ตัวเก็บประจุจะเก็บพลังงานในรูปแบบของสนามไฟฟ้าสถิตระหว่างแผ่นตัวนำทั้งสองของมัน. เมื่อมีความต่างศักย์คร่อมตัวมัน (เช่นเมื่อตัวเก็บประจุถูกต่อเข้ากับแบตเตอรี่), สนามไฟฟ้าจะเกิดขึ้นทั่วไดอิเล็กทริก, ทำให้เกิดประจุบวก (+Q) สะสมบนแผ่นตัวนำหนึ่งและประจุลบ (-Q) สะสมบนอีกแผ่นตัวนำหนึ่ง. ถ้าแบตเตอรี่ถูกต่อเข้ากับตัวเก็บประจุเป็นเวลานานเพียงพอ, จะไม่มีกระแสสามารถไหลผ่านตัวเก็บประจุได้. อย่างไรก็ตาม, ถ้าแรงดันไฟฟ้าเร่งหรือสลับถูกนำมาใช้คร่อมตัวตัวเก็บประจุ, กระแสที่เคลื่อนที่จะสามารถไหลได้.

ปริมาณประจุไฟฟ้า (ค่าความจุ) จะมากขึ้นเมื่อช่องห่างระหว่างแผ่นตัวนำทั้งสองแคบลงและเมื่อตัวนำทั้งสองจะมีพื้นผิวที่มีขนาดใหญ่ขึ้น. ในทางปฏิบัติ, ไดอิเล็กทริกระหว่างแผ่นตัวนำทั้งสองสามารถให้กระแสรั่วจำนวนเล็กน้อยผ่านได้และไดอิเล็กทริกยังมีขีดจำกัดของความเข้มสนามไฟฟ้าอีกด้วย, ที่เรียกว่าแรงดันไฟฟ้าถล่มทะลาย (อังกฤษ: breakdown voltage). ตัวนำทั้งสองและขาทั้งสองข้างของมันจะสร้างการเหนี่ยวนำ (อังกฤษ: inductance) และความต้านทาน (อังกฤษ: resistance) ที่ไม่พึงประสงค์.

ตัวเก็บประจุถูกใช้กันอย่างแพร่หลายในวงจรอิเล็กทรอนิกส์สำหรับปิดกั้นกระแสตรงขณะที่ยอมให้กระแสสลับผ่านได้. ในวงจรกรองแบบอนาล็อก, พวกมันทำเอาต์พุตของแหล่งจ่ายไฟให้เรียบ. ในวงจรเรโซแนนซ์ พวกมันใช้จูนหาสถานีวิทยุ. ในระบบส่งกำลังไฟฟ้า พวกมันทำแรงดันไฟฟ้าและกระแสไฟฟ้าให้มีเสถียรภาพ[82].

การจัดเก็บแบบแม่เหล็กไฟฟ้า

บทความหลัก: Superconducting magnetic energy storage

ระบบการจัดเก็บพลังงานด้วยแม่เหล็กตัวนำยิ่งยวด (SMES) จะจัดเก็บพลังงานในสนามแม่เหล็กที่ถูกสร้างขึ้นโดยการไหลของกระแสตรงในขดลวดตัวนำยิ่งยวดที่ทำให้เย็นแบบ cryogenic ที่อุณหภูมิต่ำกว่าอุณหภูมิยิ่งยวดวิกฤตของมัน. ระบบ SMES ทั่วไปประกอบด้วยสามส่วน: ขดลวดตัวนำยิ่งยวด, ระบบปรับสภาพไฟฟ้าและตู้เย็นที่ให้ความเย็นแบบ cryogenic. เมื่อขดลวดตัวนำยิ่งยวดถูกชาร์จ, กระแสจะไม่สลายตัวและพลังงานแม่เหล็กสามารถถูกเก็บไว้ตลอดไป[83].

พลังงานที่เก็บไว้จะถูกปล่อยกลับไปยังเครือข่ายโดยการดีสชาร์จขดลวด. ระบบปรับสภาพไฟฟ้าใชัตัวเรียงกระแส เพื่อแปลงกระแสสลับ (AC) ให้เป็นกระแสตรง (DC) หรือใช้อินเวอร์เตอร์แปลง DC กลับไปเป็น AC. อินเวอร์เตอร์/ตัวเรียงกระแสทำให้เกิดการสูญเสียพลังงานประมาณ 2-3% ในแต่ละทิศทาง. SMES สูญเสียพลังงานไฟฟ้าในขั้นตอนการจัดเก็บเป็นจำนวนที่น้อยที่สุดเมื่อเทียบกับวิธีอื่น ๆ ของการจัดเก็บพลังงาน. ระบบ SMES มีประสิทธิภาพสูง; ประสิทธิภาพไป-กลับมีมากกว่า 95%[84].

เนื่องจากความต้องการพลังงานอย่างมากของเครื่องทำความเย็นและค่าใช้จ่ายที่สูงของขดลวดตัวนำยิ่งยวด, SMES ในขณะนี้จะถูกใช้สำหรับการจัดเก็บพลังงานระยะเวลาสั้น. ดังนั้น SMES ได้รับการทุ่มเทกันโดยทั่วไปมากที่สุดเพื่อการปรับปรุงคุณภาพไฟฟ้า. ถ้า SMES จะถูกใช้สำหรับการสาธารณูปโภค, มันควรจะเป็นอุปกรณ์จัดเก็บพลังงานรายวัน, ชาร์จจากไฟฟ้า baseload ในเวลากลางคืนและใช้ช่วง peak load เวลากลางวัน[83].

รายการแบบกว้าง

ดูเพิ่มเติม: Outline of energy storage

รายการต่อไปนี้ประกอบด้วยประเภทของการจัดเก็บพลังงานแบบธรรมชาติและแบบที่ไม่ใช่เชิงพาณิชย์อื่น ๆ, นอกเหนือจากพวกที่ได้รับการออกแบบมาสำหรับการใช้งานในอุตสาหกรรมและการพาณิชย์:

ใกล้เคียง

การเกณฑ์ทหารในประเทศไทย การเกณฑ์ทหาร การเกิดสปีชีส์ การเก็บพลังงาน การเกิดเอ็มบริโอ การเกิดอารมณ์เพศจากสิ่งเฉพาะ การเก็บรักษาไฮโดรเจน การเก็บศพ การเกิดโดยไม่ผสมพันธุ์ การเกิดลิ่มเลือดและสิ่งหลุดอุดหลอดเลือดภายหลังการได้รับวัคซีนโควิด-19

แหล่งที่มา

WikiPedia: การเก็บพลังงาน http://www.eagle.ca/~gcowan/boron_blast.html http://www.nrcan.gc.ca/media-room/news-release/201... http://www.geo-exchange.ca/en/UserAttachments/flex... http://www.stucky.ch/en/contenu/pdf/Pumped_storage... http://www.alcres.com/docs/alydro-energy-storage.p... http://blacklemag.com/technology/using-trains-and-... http://ergosphere.blogspot.com/2005/06/zinc-miracl... http://www.bloomberg.com/news/print/2012-08-27/ski... http://www.calmac.com/whatsnew/a6maccracken1.pdf http://www.democratandchronicle.com/story/money/20...