คุณสมบัติ ของ หน่วยประสาทสั่งการ

แรงที่กล้ามเนื้อออกไม่ได้ขึ้นอยู่กับจำนวนของหน่วยสั่งการอย่างเดียว แต่ยังขึ้นอยู่กับคุณสมบัติการทำงานของหน่วยสั่งการอีกด้วย คุณสมบัติรวมทั้งความรวดเร็วในการหดเกร็ง แรงที่ออกได้มากที่สุด และความล้าได้/ความทนล้า คุณสมบัติการทำงานของหน่วยสั่งการจะต่าง ๆ กันทั้งภายในกล้ามเนื้อเดียวกันและกล้ามเนื้อต่างกัน หน่วยสั่งการแรกที่ร่างกายจัดเข้าทำงานเมื่อเคลื่อนไหวใต้อำนาจจิตใจเป็นแบบหดเกร็งช้า ออกแรงน้อย แต่ทนล้า และที่จัดเข้าทำงานหลังสุดเป็นแบบหดเกร็งเร็ว ออกแรงมาก และล้าง่าย หน่วยสั่งการของมนุษย์โดยมากเป็นแบบหดเกร็งเร็วปานกลางและออกแรงได้น้อย[4] เพราะเหตุนี้ หน่วยสั่งการจึงจัดเป็นประเภทต่าง ๆ ได้

ประเภทหน่วยสั่งการ

หน่วยสั่งการหนึ่งจะมีเส้นใยกล้ามเนื้อ (muscle fibre) ประเภทเดียวกัน[4] จึงสามารถจัดกลุ่มตามคุณสมบัติต่าง ๆ ของเส้นใยกล้ามเนื้อ

  • ทางสรีรวิทยา[7]
    • ความเร็วการหดเกร็งแบบคงยาว (isometric contraction)
      • อัตราการเพิ่มแรง
      • เวลากว่าแรงกระตุกครั้งหนึ่งจะถึงจุดสูงสุดโดยตอบสนองต่ออิมพัลส์ประสาทหน่วยเดียว
ปัจจัยเหล่านี้แยกแยะใยกล้ามเนื้อเป็น
  • FF — Fast fatigable (เร็ว ล้าได้) — แรงมาก หดเกร็งเร็ว แต่ล้าภายในไม่กี่วินาที (เส้นใยกล้ามเนื้อปรากฏเป็นสีซีด มีไมโทรคอนเดรียน้อย ถึงขีดเริ่มเปลี่ยนการทำงานต่อเมื่อต้องหดเกร็งกล้ามเนื้อเร็วและออกแรงมาก ใช้สำหรับกิจกรรมที่ต้องออกแรงมากระยะสั้น ๆ เช่น วิ่ง[6])
  • FR — Fast fatigue resistant (เร็ว ทนล้า) — แรงปานกลาง ทนล้า — หดเกร็งได้เร็วและทนล้า (ไม่เร็วเท่า FF ออกแรงได้มากเป็นประมาณสองเท่าของหน่วย S[6])
  • FI — Fast intermediate (เร็ว ปานกลาง) — อยู่ระหว่าง FF กับ FR
  • S หรือ SO — Slow (oxidative) — แรงน้อย หดเกร็งช้า ทนล้าดีมาก (มีไมโอโกลบินมาก มีไมโทคอนเดรียมาก ได้หลอดเลือดฝอยดี เส้นใยกล้ามเนื้อปรากฏเป็นสีแดง มีขีดเริ่มเปลี่ยนการทำงานน้อย ทำงานอย่างต่อเนื่อง [tonic] ใช้สำหรับกิจกรรมที่ใช้กล้ามเนื้ออย่างต่อเนื่อง เช่น ดำรงร่างกายเมื่อยืน[6])
ปัจจัยเหล่านี้แยกแยะใยกล้ามเนื้อเป็น
  • I (Slow oxidative, SO) — มีเอนไซม์สลายกลูโคสต่ำและเอนไซม์เปลี่ยนออกซิเดชันสูง, มี myosin ATPase น้อย[upper-alpha 1], ไวต่อแอลคาไลน์
  • IIa (Fast oxidative/glycolytic, FOG)[9] — มีเอนไซม์สลายกลูโคสสูง, มีเอนไซม์เปลี่ยนออกซิเดชันและ myosin ATPase, ไวต่อกรด
  • IIb (Fast glycolytic, FG) — มีเอนไซม์สลายกลูโคสสูง, มีเอนไซม์เปลี่ยนออกซิเดชันน้อย, มี myosin ATPase[upper-alpha 1] มาก, ไวต่อกรด
  • IIi — เป็นเส้นใยกล้ามเนื้อที่มีลักษณะระหว่าง IIa กับ IIb
ประเภททางสรีรวิทยาเทียบกับประเภททางชีวเคมีได้ดังนี้S กับ I, FR กับ IIa, FF กับ IIb, FI กับ IIi
  • ทางมิญชเคมีภูมิคุ้มกัน (immunohistochemical) ซึ่งเป็นวิธีแยกแยะใยกล้ามเนื้อที่เกิดขึ้นภายหลังจากวิธีที่กล่าวมาแล้ว[10]
    • Myosin Heavy Chain (MHC)
    • Myosin Light Chain — alkali (MLC1)
    • Myosin Light Chain — regulatory (MLC2)
ประเภททางมิญชเคมีภูมิคุ้มกันมีดังต่อไปนี้ โดยประเภท IIa, IIb และ slow เทียบกับประเภททางมิญชเคมี IIa, IIb และ I (slow)
กลุ่มยีน
ช่วงพัฒนาการ
ใยกล้ามเนื้อแบบเร็ว (II)
ใยกล้ามเนื้อแบบช้า (I)
MHC
MHC IIa
β/slow MHC[upper-alpha 2]
Neonatal MHC
MHC IIb
MHC IIx
MLC1 (alkali)
Embryonic
1f
1s
1f
3f
MLC2 (regulatory)
2f
2f
2s
ตารางทำสำเนามาจาก Schiaffino, Reggiani (1994)[10]
ปัจจุบันรู้จักยีน MHC 15 ประเภทในกล้ามเนื้อ โดยจะมีบางอย่างเท่านั้นที่แสดงออกในเส้นใยกล้ามเนื้อหนึ่ง ๆ ยีนเช่นนี้เป็นส่วนของยีนไมโอซีน ~18 ประเภทโดยจัดว่าเป็น class II แต่ไม่ควรสับสนกับไมโอซิน type II ที่ระบุโดยมิญชเคมีภูมิคุ้มกัน การแสดงออกของยีน MHC หลายอย่างภายในใยกล้ามเนื้อเส้นเดียวเป็นตัวอย่างของภาวะพหุสัณฐาน[11] กรรมพันธุ์และปัจจัยทางชีวภาพอื่น ๆ เช่น กิจกรรม การได้เส้นประสาท และฮอร์โมนโดยส่วนหนึ่งจะเป็นตัวกำหนดการแสดงออกสัมพัทธ์ของไมโอซินประเภทต่าง ๆ เหล่านี้[12]

การแยกแยะหน่วยสั่งการได้ทำหลายรอบหลายคราวจนรู้แล้วว่า เส้นใยกล้ามเนื้อต่าง ๆ มีไมโอซินหลายประเภทผสมต่าง ๆ กันโดยไม่อาจจัดเข้ากลุ่มใดกลุ่มหนึ่งได้ง่ายดังนั้น กลุ่ม 3-4 กลุ่มที่จัดเป็นแบบฉบับจึงเพียงแสดงคุณสมบัติต่าง ๆ แบบสุดขีดของใยกล้ามเนื้อ แต่ละกลุ่มกำหนดโดยคุณสมบัติทางชีวเคมี

ผลของการออกกำลังกาย

ดูข้อมูลเพิ่มเติมที่: การออกกำลังกาย § ผลต่อสุขภาพ และ Motor unit plasticity

การออกกำลังกายอาจเปลี่ยนคุณสมบัติของหน่วยสั่งการรวมทั้งความรวดเร็วในการหดเกร็ง แรงที่ออกได้มากที่สุด และความล้าได้/ความทนล้า ซึ่งมีผลจนถึงอายุ 90 ปีแม้จะลดลงตามอายุ คือ[13]

  • การลดการออกแรงกล้ามเนื้อ เช่น เมื่ออายุมากขึ้น นอนป่วย ตรึงแขนขาไว้ สภาพไร้น้ำหนักเช่นในอวกาศ จะลดสมรรถภาพของคุณสมบัติทั้งสาม
  • การออกกำลังกายเพื่อเพิ่มความแข็งแรง (เช่นเล่นกล้าม) และเพื่อเพิ่มความอดทน (เช่นวิ่งทางไกล) จะมีผลต่างกัน คือ
    • แบบเพิ่มความแข็งแรง ที่ออกกำลังกล้ามเนื้อหนักหลายครั้งต่อสัปดาห์จะเพิ่มความเร็วการหดเกร็งและเพิ่มแรงที่ออกได้มากสุด
    • แบบเพิ่มความอดทน ที่ออกแรงไม่หนักแต่นานจะเพิ่มความทนล้าของกล้ามเนื้อ

การเพิ่มความเร็วการหดเกร็งกล้ามเนื้อมีเหตุจากสมรรถภาพที่ดีขึ้นของโปรตีน myosin ในเส้นใยกล้ามเนื้อ แรงออกได้มากขึ้นเพราะเส้นใยกล้ามเนื้อใหญ่ขึ้นและเพราะมีโปรตีนหดเกร็ง (contractile protein) มากและหนาแน่นขึ้น การเพิ่มความทนล้ามีเหตุหลายอย่างรวมทั้งเส้นเลือดหนาแน่นขึ้น, ไมโทคอนเดรียหนาแน่นขึ้น, เส้นใยฝอยกล้ามเนื้อ (myofibril) ตอบสนองต่อกระแสประสาทได้ดีขึ้นคือมีสภาพ "excitation-contraction coupling" ที่ดีขึ้น และมีสมรรถภาพทางเมแทบอลิซึมที่ดีขึ้น[13]

อัตราส่วนของเส้นใยกล้ามเนื้อแบบ Slow Oxidative (SO) ต่อ Fast Glycolytic (FG) ในกล้ามเนื้อ quadriceps femoris[upper-alpha 3] ของนักกีฬาผู้ชาย[14]
กลุ่มบุคคลSOFG
นักวิ่งมาราธอน82%18%
นักว่ายน้ำ74%26%
ชายธรรมดา45%55%
นักวิ่งเร็วและนักกระโดด37%63%

การออกกำลังกายทั้งสองแบบไม่มีผลต่ออัตราส่วนของเส้นใยกล้ามเนื้อแบบ I ต่อแบบ II แต่มีผลต่ออัตราส่วนของเส้นใยกล้ามเนื้อแบบ II ประเภทย่อยต่าง ๆ คือ[13]

  • การเล่นกล้ามเนื้อขา 2-3 เดือนอาจ
    • เพิ่มขนาดของเส้นใยกล้ามเนื้อทั้งแบบ I (0-20%) และ II (20-60%)
    • เปลี่ยนสัดส่วนของเส้นใยกล้ามเนื้อแบบ II
  • การออกกำลังแบบฝึกความอดทน
    • เปลี่ยนสัดส่วนของเส้นใยกล้ามเนื้อแบบ II

ส่วนการนอนป่วยหรือการตรึงแขนขา

  • ไม่มีผลต่ออัตราส่วนของเส้นใยกล้ามเนื้อแบบ I ต่อแบบ II
  • ลดขนาดของเส้นใยกล้ามเนื้อและสมรรถภาพการออกแรง

อย่างไรก็ดี สภาพไร้น้ำหนักเช่นในอวกาศมีผลลดสัดส่วนของเส้นใยกล้ามเนื้อแบบ I[13]อนึ่ง การควบคุมการทดลองและตีความงานศึกษาการออกกำลังกายในสิ่งมีชีวิตเป็นเรื่องยาก[15]มีงานศึกษาที่พบสัดส่วนของเส้นใยกล้ามเนื้อต่าง ๆ กันในบุคคลต่าง ๆ[6]ตามตารางที่แสดง

อัตราการมีเส้นประสาทไปเลี้ยง

ในสัตว์มีกระดูกสันหลังที่โตแล้วโดยมาก เส้นใยกล้ามเนื้อหนึ่ง ๆ จะได้แอกซอนจากเซลล์ประสาทสั่งการเพียงเซลล์เดียว อัตราเส้นใยกล้ามเนื้อต่อแอกซอนเซลล์ประสาทสั่งการหรืออัตราการมีเส้นประสาทไปเลี้ยง (innervation ratio) จะต่าง ๆ กันสำหรับกล้ามเนื้อขึ้นอยู่กับหน้าที่ ในมนุษย์นี่เริ่มจาก 5 ที่กล้ามเนื้อตาจนถึงเกือบสองพันที่กล้ามเนื้อขา เพราะค่านี้ระบุจำนวนเฉลี่ยเส้นใยกล้ามเนื้อภายในหน่วยสั่งการหนึ่ง ๆ จึงเท่ากับระบุว่า เมื่อเพิ่มการออกแรงโดยจัดหน่วยสั่งการหนึ่งเข้าทำงาน แรงที่ออกเพิ่มจะมากขึ้นเท่าไรโดยเฉลี่ย (ค่ายิ่งมากก็แสดงว่าการจัดหน่วยสั่งการหนึ่งเข้าทำงานก็จะเพิ่มการออกแรงมากขึ้นเท่านั้น) และก็ระบุด้วยว่า กล้ามเนื้อหนึ่ง ๆ สามารถออกแรงได้อย่างละเอียดแค่ไหน (ค่ายิ่งน้อยก็แสดงว่าสามารถออกแรงกล้ามเนื้อนั้นได้อย่างละเอียดขึ้นเท่านั้น)[3]

ค่าประเมินอัตราส่วนเส้นประสาทในหน่วยสั่งการของกล้ามเนื้อมนุษย์
กล้ามเนื้อจำนวน
แอกซอนสั่งการ
จำนวน
เส้นใยกล้ามเนื้อ
Innervation
ratio
อ้างอิง
ไบเซ็ปส์ที่ต้นแขน774580,000750Buchtal, 1961[16]
เบรคิโอเรเดียลิสที่ปลายแขน315129,000410Feinstein et al[16]
dorsal interosseous แรกที่มือ11940,500340Feinstein et al[16]
medial gastrocnemius ที่ปลายขา5791,120,0001,934Feinstein et al[16]
tibialis anterior ที่เท้า445250,200562Feinstein et al[16]
rectus lateralis ที่ตา4,15022,0005[17]

อย่างไรก็ดี ก็ใช่ว่าหน่วยสั่งการทั้งหมดของกล้ามเนื้อหนึ่ง ๆ จะมีเส้นใยกล้ามเนื้อเท่า ๆ กัน เช่น กล้ามเนื้อมือคือ first dorsal interosseous muscle (dorsal interossei) มีอัตราการมีเส้นประสาทไปเลี้ยงระหว่าง 21-1,770 ดังนั้น หน่วยสั่งการที่มีเส้นใยกล้ามเนื้อมากที่สุด (จึงแข็งแรงสุด) จึงสามารถออกแรงเกือบเท่าหน่วยสั่งการโดยเฉลี่ยของกล้ามเนื้อขาคือ medial gastrocnemius[3]

คุณสมบัติอธิบายความต่างของกล้ามเนื้อ

คุณสมบัติของหน่วยสั่งการประเภทต่าง ๆ และอัตราการมีเส้นประสาทไปเลี้ยงสามารถอธิบายความแตกต่างบางอย่างของกล้ามเนื้อต่าง ๆ ยกตัวอย่าง เช่น

  • กล้ามเนื้อ soleus muscle ที่น่องซึ่งหดเกร็งช้า (การกระตุก [twitch] อาจใช้เวลานานถึง 100 มิลลิวินาที) มีหน่วยสั่งการเล็กกว่า มีเซลล์ประสาทสั่งการเล็กกว่าซึ่งกระตุ้นได้ง่ายกว่า ออกแรงได้น้อยกว่า มีเส้นใยกล้ามเนื้อเล็กกว่า สังเคราะห์เอทีพีโดยใช้ออกซิเจน ทนล้า สลายเอทีพีด้วยน้ำช้า มีไกลโคไลซิสปานกลาง มีไมโอโกลบินมาก มีไกลโคเจนน้อย มีไมโทคอนเดรียใหญ่และมาก มีเส้นเลือดฝอยมาก มีสีแดง[18] มีอัตราการมีเส้นประสาทไปเลี้ยงที่ 180 เป็นกล้ามเนื้อสำคัญในการดำรงกิริยาท่าทาง[6]
  • กล้ามเนื้อ gastrocnemius muscle ที่น่องเช่นกัน แต่หดเกร็งเร็ว (การกระตุกอาจสั้นเพียง 7.5 มิลลิวินาที) มีหน่วยสั่งการใหญ่กว่า มีเซลล์ประสาทสั่งการใหญ่กว่าซึ่งกระตุ้นได้ยากกว่า ออกแรงได้มากกว่า มีเส้นใยกล้ามเนื้อใหญ่กว่า สังเคราะห์เอทีพีโดยไม่ใช้ออกซิเจน ไม่ทนล้า สลายเอทีพีด้วยน้ำเร็ว มีไกลโคไลซิสเร็ว มีไมโอโกลบินน้อย มีไกลโคเจนมาก มีไมโทคอนเดรียเล็กกว่าและน้อยกว่า มีเส้นเลือดฝอยน้อยกว่า มีสีซีด[18] มีอัตราการมีเส้นประสาทไปเลี้ยงระหว่าง 1,000-2,000 เป็นกล้ามเนื้อที่สามารถออกแรงเพื่อเปลี่ยนกิริยาท่าทางได้อย่างทันที[6]
  • กล้ามเนื้อตา มีลักษณะต่าง ๆ คล้าย gastrocnemius muscle[18] แต่มีอัตราการมีเส้นประสาทไปเลี้ยงแค่ 3 มีเส้นใยกล้ามเนื้อที่หดเกร็งได้ด้วยความเร็วสูงสุดในสัดส่วนสูง สามารถขยับตาได้อย่างรวดเร็วและแม่นยำด้วยแรงน้อย[6]

ใกล้เคียง

หน่วยบัญชาการนาวิกโยธิน หน่วยปฏิบัติการพิเศษ หน่วยรบพิเศษ หน่วยบัญชาการสงครามพิเศษ หน่วยบัญชาการถวายความปลอดภัยรักษาพระองค์ หน่วยบัญชาการสงครามพิเศษทางเรือ กองเรือยุทธการ หน่วยผจญคนไฟลุก หน่วยยามชายแดน หน่วยยามฝั่ง หน่วยงานบังคับใช้กฎหมาย

แหล่งที่มา

WikiPedia: หน่วยประสาทสั่งการ http://www.siumed.edu/~dking2/ssb/neuron.htm //www.ncbi.nlm.nih.gov/pmc/articles/PMC1350367 //www.ncbi.nlm.nih.gov/pmc/articles/PMC1350696 //www.ncbi.nlm.nih.gov/pmc/articles/PMC2637923 //www.ncbi.nlm.nih.gov/pmc/articles/PMC2892424 //www.ncbi.nlm.nih.gov/pmc/articles/PMC4254845 //www.ncbi.nlm.nih.gov/pubmed/11133928 //www.ncbi.nlm.nih.gov/pubmed/12738613 //www.ncbi.nlm.nih.gov/pubmed/20076726 //www.ncbi.nlm.nih.gov/pubmed/20581280