ความปลอดภัย ของ เออีเอส

จนถึงเดือนพฤษภาคม 2009 มีแต่การโจมตีแบบ side-channel attack[upper-alpha 17]เท่านั้นที่สามารถเจาะเออีเอสซึ่งเข้ารหัสแบบสมบูรณ์อย่างได้ผล โดยทำได้กับการทำให้เกิดผลเฉพาะบางอย่างเท่านั้นสำนักงานความมั่นคงแห่งชาติสหรัฐ (NSA) ได้ทบทวนไซเฟอร์[upper-alpha 5]ที่เข้าแข่งขันทั้งหมดรวมทั้งเรนดาล และเบื้องต้นได้ระบุว่า ทั้งหมดปลอดภัยพอเข้ารหัสลับข้อมูลที่ไม่ใช่ราชการลับของรัฐบาลกลางสหรัฐต่อมาในเดือนมิถุนายน 2003 รัฐบาลกลางสหรัฐได้ประกาศว่า จะใช้เออีเอสป้องกันราชการลับ โดยระบุว่า

แบบและความเข้มแข็งของขั้นตอนวิธีเออีเอสโดยใช้กุญแจทุกขนาด (คือ 128, 192 และ 256 บิต) เพียงพอป้องกันราชการลับจนถึงระดับ SECRET

ส่วนข้อมูลระดับ TOP SECRET ต้องใช้ขนาดกุญแจ 192 หรือ 256 (บิต)การทำเออีเอสให้เกิดผลในผลิตภัณฑ์ที่มุ่งป้องกันระบบหรือข้อมูลเกี่ยวกับความมั่นคงแห่งชาติต้องได้การทบทวนและการรับรองจากสำนักงานความมั่นคงแห่งชาติ (NSA) ก่อนจัดหามาใช้[15]

เออีเอสตามมาตรฐานต้องคำนวณเข้ารหัส 10 รอบสำหรับกุญแจขนาด 128 บิต, 12 รอบสำหรับกุญแจ 192 บิต และ 14 รอบสำหรับกุญแจ 256 บิตจนถึงปี 2006 วิธีการโจมตีทางทฤษฎีซึ่งจัดว่าดีที่สุดและตีพิมพ์เป็นผลงาน ใช้โจมตีเออีเอสที่มีกุญแจ 128 บิตและคำนวณเข้ารหัส 7 รอบ, กุญแจ 192 บิตที่คำนวณ 8 รอบ และกุญแจ 256 บิตที่คำนวณ 9 รอบ[16]

วิธีการโจมตีที่รู้

สำหรับนักวิทยาการเข้ารหัสลับ การทอน (break) การเข้ารหัสลับก็คือปฏิบัติการโจมตีที่ทำได้เร็วกว่าการใช้กำลังล้วน ๆ ซึ่งเป็นการลองถอดรหัสด้วยกุญแจที่อาจจะใช่เป็นลำดับดังนั้น การทอนจึงรวมวิธีที่จริง ๆ ยังทำไม่ได้ด้วยเทคโนโลยีปัจจุบันซึ่งแม้จะปฏิบัติไม่ได้ แต่ก็ช่วยให้เข้าใจรูปแบบของความอ่อนแอการโจมตีด้วยกำลังล้วน ๆ ซึ่งได้ผลที่สุด ปรากฏต่อสาธารณชน ทำต่อขั้นตอนวิธีการเข้ารหัสลับแบบบล็อกไซเฟอร์[upper-alpha 4]ซึ่งได้ทำให้เกิดผลอย่างกว้างขวางที่สุด เป็นการโจมตีกุญแจ RC5 ขนาด 64 บิต โดย distributed.net[upper-alpha 18]ในปี 2006[17]

ขนาดของกุญแจเท่ากับเพิ่มเป็นสองเท่าต่อบิตทุกบิตที่เพิ่มในกุญแจ และถ้ากุญแจอาจมีค่าอะไรก็ได้ในโอกาสเท่า ๆ กัน การโจมตีด้วยกำลังล้วน ๆ เพื่อหากุญแจเท่ากับต้องเพิ่มเวลาเป็นสองเท่าโดยเฉลี่ยซึ่งเท่ากับต้องเพิ่มเวลาเป็นเลขชี้กำลังตามขนาดกุญแจแต่ขนาดกุญแจเพียงอย่างเดียวไม่ได้แน่นอนว่าปลอดภัยเพราะก็มีไซเฟอร์[upper-alpha 5]ที่มีกุญแจใหญ่มากแต่พบว่าอ่อนแอ

เออีเอสใช้หลักพีชคณิตที่ค่อนข้างง่าย[18]ในปี 2002 นักวิทยาการเข้ารหัสชาวอังกฤษและออสเตรเลียได้แสดงการโจมตีโดยทฤษฎีซึ่งเรียกว่า XSL attack เพื่อแสดงจุดอ่อนของขั้นตอนวิธีเออีเอส โดยส่วนหนึ่งก็เพราะความซับซ้อนไม่มากของการคำนวณแบบไม่ใช่เชิงเส้นของมัน[19]แต่ต่อมานักวิชาการอื่น ๆ ก็ได้แสดงว่า การโจมตีที่กล่าวนี้ทำให้ได้ผลไม่ได้

ในช่วงการเลือกไซเฟอร์เพื่อเป็นมาตรฐานเออีเอส ผู้พัฒนาวิธีคู่แข่งได้เขียนถึงขั้นตอนวิธีเรนดาลไว้ว่า "...พวกผมเป็นห่วงเรื่องการใช้ (ไซเฟอร์นี้) ...ในโปรแกรมประยุกต์ที่ความปลอดภัยสำคัญขีดสุด"[20]แต่ในปลายปี 2000 หลังจากได้ตั้งเออีเอสแล้ว ผู้พัฒนาขั้นตอนวิธีคู่แข่งคือ Twofish ได้เขียนว่า แม้เขาคิดว่า วันหนึ่งจะเกิดการโจมตีเชิงวิชาการ (คือโดยทฤษฎีที่นำไปใช้จริง ๆ ไม่ได้ด้วยเทคโนโลยีปัจจุบัน) ต่อเรนดาลที่ได้ผล แต่เขา "ไม่เชื่อว่า จะมีใครค้นพบการโจมตีที่ทำให้สามารถอ่านการสื่อสารที่เข้ารหัสโดยเรนดาลได้"[21]

ในปี 2009 มีการค้นพบ related-key attack[upper-alpha 3] (การโจมตีโดยมีกุญแจสัมพันธ์) แบบหนึ่งที่ถือเอาประโยชน์จากความเรียบง่ายของ AES key schedule[upper-alpha 10] โดยมีความซับซ้อนที่ 2119ซึ่งเมื่อถึงปลายปีได้ทำให้เร็วขึ้นเหลือ 299.5[2]แต่ related-key attack ก็ไม่เป็นปัญหาในเกณฑ์วิธีการเข้ารหัสลับที่ออกแบบและทำให้เกิดผลอย่างเหมาะสม เพราะโปรแกรมย่อมไม่ยอมให้ใช้กุญแจที่สัมพันธ์กัน

ในปี 2009 นักวิชาการได้ตีพิมพ์ (เป็นเอกสารที่ยังไม่ได้ทบทวนโดยผู้รู้เสมอกัน) การโจมตีเออีเอส-256 โดยใช้กุญแจที่สัมพันธ์กันเพียงแค่ 2 ตัว ใช้การคำนวณซับซ้อนระดับ 239 เพื่อเจาะกุญแจขนาด 256 บิตเมื่อคำนวณเข้ารหัสเพียงแค่ 9 รอบ หรือ 245 เมื่อคำนวณเข้ารหัส 10 รอบโดยใช้การโจมตีแบบ related subkey attack ที่กุญแจสัมพันธ์กันยิ่งกว่า หรือ 270 เมื่อเจาะการเข้ารหัสที่คำนวณ 11 รอบ[22]แต่จริง ๆ เออีเอส 256 บิตต้องเข้ารหัส 14 รอบ การโจมตีเยี่ยงนี้จึงไม่ได้ผลต่อเออีเอสที่ใช้จริง ๆ การนำไปใช้ได้จริง ๆ ของการโจมตีที่มีกุญแจสัมพันธ์กันยิ่งกว่าก็ถูกวิจารณ์[23] แม้โดยวินเซ็นต์ เรเม็นเอง[24]

ในปลายปี 2009 มีการตีพิมพ์การโจมตีแบบ known-key distinguishing attack แรกต่อเออีเอส-128 ที่เข้ารหัส 8 รอบ[25]โดยมีความซับซ้อนเชิงเวลาที่ 248 และความซับซ้อนเชิงความจำที่ 232แต่เพราะเออีเอส-128 ต้องเข้ารหัส 10 รอบ การโจมตีนี้จึงไม่มีผลต่อเออีเอสที่ใช้กันจริง ๆ

การโจมตีโดยกู้คืนกุญแจ (key-recovery attack) ต่อเออีเอสเต็ม ๆ ได้พิมพ์ในงานปี 2011[26]การโจมตีเป็นแบบ biclique attack และเร็วกว่าการโจมตีที่ใช้กำลังอย่างเดียวถึง 4 เท่าโดยต้องใช้การดำเนินการ 2126.2 ครั้งเพื่อกู้คืนกุญแจ AES-128สำหรับ AES-192 และ AES-256 ต้องใช้การดำเนินการ 2190.2 และ 2254.6 ครั้งตามลำดับต่อมาผลจึงได้ทำเร็วขึ้นเป็น 2126.0 สำหรับ AES-128, 2189.9 สำหรับ AES-192 และ 2254.3 สำหรับ AES-256[27]เหล่านี้เป็นผลที่ได้ดีสุดสำหรับการโจมตีโดยกู้คืนกุญแจต่อเออีเอส

นี่เป็นประโยชน์เพียงเล็กน้อย เพราะกุญแจขนาด 126 บิต (แทนที่อาจใช้คือ 128 บิต) ยังต้องใช้เวลาเป็นพัน ๆ ล้านปีถ้าใช้ฮาร์ดแวร์ปัจจุบันหรือแบบที่ยังพอเล็งเห็นล่วงหน้าได้อนึ่ง ผู้เขียนคำนวณว่า การโจมตีเร็วสุดโดยใช้เทคนิกของผู้เขียนต่อเออีเอสที่ใช้กุญแจ 128 บิตยังต้องเก็บข้อมูล 288 บิตเท่ากับข้อมูล 38 ล้านล้านเทระไบต์ ซึ่งมากกว่าข้อมูลที่เก็บบนคอมพ์ทั้งหมดในโลกในปี 2016 ดังนั้น นี่จึงไม่ทำลายความปลอดภัยของเออีเอส[28]ต่อมา ข้อมูลที่ต้องเก็บลดได้เหลือ 256 บิต[27]ซึ่งเท่ากับ 9,007 เทระไบต์

ตามข้อมูลรั่วของเอ็ดเวิร์ด สโนว์เดน สำนักงานความมั่นคงแห่งชาติสหรัฐ (NSA) กำลังวิจัยว่า การโจมตีการเข้ารหัสลับโดยใช้สถิติเทา (tau statistic) อาจช่วยเจาะเออีเอสได้หรือไม่[29]

ดังนั้นในปัจจุบัน จึงยังไม่มีการโจมตีที่ปฏิบัติได้ซึ่งช่วยให้บุคคลที่ไม่มีกุญแจสามารถอ่านข้อมูลที่เข้ารหัสลับด้วยเออีเอสเมื่อทำให้เกิดผลอย่างถูกต้อง

Side-channel attack

side-channel attack[upper-alpha 17] เป็นการโจมตีไซเฟอร์แบบไม่ได้ทำต่อกล่องดำ ดังนั้น ไซเฟอร์ต่าง ๆ จึงไม่ได้ออกแบบต่อต้านการโจมตีเช่นนี้โดยตรง แต่ก็มีผลทางการปฏิบัติคือ มันโจมตีการทำให้เกิดผลของไซเฟอร์ที่ฮาร์ดแวร์หรือซอฟต์แวร์มีข้อมูลรั่วไหลอย่างไม่ได้ตั้งใจมีการโจมตีเช่นนี้หลายอย่างที่รู้สำหรับเออีเอส

ในกลางปี 2005 นักวิทยาการเข้ารหัสลับชาวเยอรมัน-อเมริกันประกาศการโจมตีอาศัยเวลาของแคช (cache-timing attack) ที่เขาใช้เจาะทำลายเซิร์ฟเวอร์ซึ่งทำตามสั่ง (custom server) และใช้การเข้ารหัสลับเออีอัสด้วยคลัง OpenSSL[30]โดยต้องใช้ข้อความธรรมดา 200 ล้านข้อความ[31]และเซิฟเวอร์ได้ตั้งให้รั่วข้อมูลเกี่ยวกับเวลาให้มากสุดเท่าที่จะเป็นไปได้ (คือ มันรายงานจำนวนไซเคิลที่ต้องใช้เพื่อเข้ารหัส)นักวิชาการผู้นี้ชี้ว่า "การลดความแม่นยำของตราเวลาเซิร์ฟเวอร์ หรือการกำจัดมันจากคำตอบสนองของเซิฟเวอร์ ไม่สามารถระงับการโจมตีได้ เพราะระบบลูกข่ายเพียงต้องจับเวลาไปกลับ (round-trip timing) ที่กำหนดด้วยนาฬิกาตนเอง แล้วชดเชยข้อมูลรบกวนที่มีเพิ่มขึ้นโดยสร้างค่าเฉลี่ยของตัวอย่างเป็นจำนวนเพิ่มขึ้น"[30]

ในปลายปี 2005 นักวิทยาการเข้ารหัสลับสามท่านตีพิมพ์เอกสารแสดงการโจมตีอาศัยเวลาของแคชต่อการทำเออีเอสให้เกิดผลที่พบใน OpenSSL และฟังกชันเข้ารหัสลับส่วนดิสก์ของลินุกซ์ คือ dm-crypt[32]การโจมตีหนึ่งสามารถได้กุญแจเออีเอสหลังจากเพียงแค่การเข้ารหัสลับเพียง 800 ครั้งโดยใช้เวลาเพียงแค่ 65 มิลลิวินาทีแต่ผู้โจมตีก็จำเป็นต้องดำเนินงานโปรแกรมในระบบหรือแพล็ตฟอร์มที่เข้ารหัสเออีเอสได้

ในปลายปี 2009 มีการตีพิมพ์การโจมตีต่อการทำให้เกิดผลบนฮาร์ดแวร์โดยใช้การวิเคราะห์ความผิดพร่องต่าง (differential fault analysis)[upper-alpha 19]ซึ่งทำให้สามารถกู้คืนกุญแจด้วยความซับซ้อน 232[33]

ในปลายปี 2010 นักวิชาการได้ตีพิมพ์เอกสารอธิบายวิธีการที่ทำได้เกือบในเวลาจริงเพื่อกู้คืนกุญแจลับจาก AES-128 โดยไม่จำเป็นต้องได้ข้อความธรรมดาหรือข้อความไซเฟอร์เป็นการโจมตีที่ใช้ได้กับการทำเออีเอส-128 ให้เกิดผลที่ใช้ compression table เช่น OpenSSL[34]การโจมตีนี้ก็จำเป็นต้องดำเนินการโปรแกรมที่ไม่เป็นเอกสิทธิบนระบบที่เข้ารหัสลับเหมือนกัน ซึ่งอาจทำได้ด้วยมัลแวร์อันง่ายกว่าการเข้าถึงบัญชีผู้ดูแลระบบ (root account) มาก[35]

ในต้นปี 2016 นักวิชาการได้แสดง side-channel attack[upper-alpha 17] ที่มีประสิทธิภาพมากต่อการทำเออีเอสให้เกิดผลซึ่งสามารถกู้คืนกุญแจ 128 บิตทั้งหมดอาศัยเพียงแค่ข้อความธรรมดา/ข้อความไซเฟอร์เพียงแค่ 6-7 บล็อก นี่ดีขึ้นอย่างมากเทียบกับงานก่อน ๆ ที่ต้องอาศัยการเข้ารหัสลับระหว่าง 100-1,000,000 ครั้ง[36] แต่ก็ต้องสามารถดำเนินการโปรแกรมในระดับผู้ใช้เหมือนกันโดยดำเนินการขั้นตอนวิธีเก็บกุญแจเพียงไม่ถึงนาที

อย่างไรก็ดี ซีพียูปัจจุบันจำนวนมากมีชุดคำสั่งเออีเอสในฮาร์ดแวร์ (เช่น AES-NI) ซึ่งช่วยป้องกัน side-channel attack ที่อาศัยเวลาเช่นตามที่ว่า[37][38]

แหล่งที่มา

WikiPedia: เออีเอส http://www.findarticles.com/p/articles/mi_m0IKZ/is... http://www.formaestudio.com/rijndaelinspector/arch... http://www.macfergus.com/pub/rdalgeq.html http://research.microsoft.com/en-us/projects/crypt... http://www.schneier.com/blog/archives/2005/05/aes_... http://www.schneier.com/crypto-gram-0010.html http://www.schneier.com/crypto-gram-0209.html http://www.schneier.com/paper-aes-performance.pdf http://www.schneier.com/paper-twofish-final.pdf http://www.springerlink.com/index/UVX5NQGNN55VK199...