สมบัติ ของ การบวก

การสลับที่

4 + 2 = 2 + 4 อธิบายด้วยกล่องสี่เหลี่ยม

การบวกมีสมบัติการสลับที่ หมายความว่าเราสามารถสลับเปลี่ยนจำนวนที่อยู่ข้างซ้ายและขวาของเครื่องหมายบวกได้ โดยผลลัพธ์ยังคงเดิม สมมติให้ a และ b เป็นจำนวนสองจำนวนใดๆ แล้ว

a + b = b + a

ข้อเท็จจริงว่าการบวกสามารถสลับที่ได้ รู้จักกันว่าเป็น "กฎการสลับที่ของการบวก" วลีนี้ได้ชี้นำว่า ยังมีกฎการสลับที่อื่น ๆ อีก ตัวอย่างเช่น กฎการสลับที่ของการคูณเป็นต้น อย่างไรก็ตามการดำเนินการทวิภาคหลายชนิดก็ไม่มีสมบัติการสลับที่ อาทิการลบ และการหาร จึงนำไปสู่ความเข้าใจผิดเมื่อกล่าวถึงกฎการสลับที่โดยไม่ระบุให้ชัดเจน

การเปลี่ยนหมู่

2 + (1 + 3) =
(2 + 1) +3

การบวกมีสมบัติการเปลี่ยนหมู่ หมายความว่าเมื่อบวกจำนวนสามจำนวนขึ้นไป ลำดับของการดำเนินการจะไม่สำคัญ

ตัวอย่างเช่น ควรนิยามนิพจน์ a + b + c ว่าหมายถึง (a + b) + c หรือ a + (b + c) ในเมื่อการบวกสามารถเปลี่ยนหมู่ได้ ดังนั้นตัวเลือกทั้งสองจึงไม่สำคัญ สำหรับจำนวนสามจำนวนใด ๆ a, b, c เป็นจริงว่า (a + b) + c = a + (b + c) ตัวอย่างเช่น (1 + 2) + 3 = 3 + 3 = 6 = 1 + 5 = 1 + (2 + 3)

เมื่อใช้การบวกร่วมกับการดำเนินการอื่น ๆ ลำดับของการดำเนินการจะเป็นสิ่งสำคัญ สำหรับลำดับมาตรฐานของการดำเนินการ การบวกจะสำคัญน้อยกว่าการยกกำลัง รากที่ n การคูณ และการหาร แต่สำคัญเท่ากับการลบ[6]

สมาชิกเอกลักษณ์

5 + 0 = 5

เมื่อบวกศูนย์เข้ากับจำนวนใด ๆ ปริมาณที่ได้จะไม่เปลี่ยนแปลง ศูนย์เป็นสมาชิกเอกลักษณ์ของการบวก หรือเรียกได้ว่าเป็นเอกลักษณ์การบวก สำหรับค่า a ใดๆ จะได้ว่า

a + 0 = 0 + a = a

กฎนี้ปรากฏเป็นครั้งแรกในตำรา พรัหมสผุฏะ สิทธานตะ (Brahmasphuta-siddhanta) เขียนโดยพรัหมคุปตะ (Brahmagupta) เมื่อ ค.ศ. 628 ถึงแม้ว่าเขาจะเขียนกฎนี้แยกออกมาเป็นสามข้อ ขึ้นอยู่กับ a ว่าเป็นจำนวนลบ จำนวนบวก หรือเป็นศูนย์ และเขาใช้ถ้อยคำอธิบายแทนการใช้สัญลักษณ์[7] ในเวลาต่อมา มหวิระ นักคณิตศาสตร์ชาวอินเดียได้เรียบเรียงแนวความคิดนั้นเสียใหม่เมื่อประมาณ ค.ศ. 830 โดยเขียนไว้ว่า "ศูนย์จะทำให้ตัวอะไรก็ตามที่บวกเข้ามามีค่าเช่นเดิม" เทียบเท่าได้กับการดำเนินการเอกภาค 0 + a = a [7] ในคริสต์ศตวรรษที่ 12 ภาสกระที่ 2 ก็ได้เขียนเอาไว้ว่า "ในการบวกด้วยตัวศูนย์ หรือการลบ ปริมาณทั้งจำนวนบวกและจำนวนลบจะคงค่าเดิม" เทียบเท่าได้กับการดำเนินการเอกภาค a + 0 = a [7]

ตัวตามหลัง

เมื่อกล่าวถึงจำนวนเต็ม การบวกด้วยหนึ่งยังมีบทบาทพิเศษ กล่าวคือ สำหรับจำนวนเต็ม a ใด ๆ แล้ว จำนวนเต็ม (a + 1) เป็นจำนวนเต็มที่น้อยที่สุดที่มากกว่า a เรียกว่าเป็นตัวตามหลังของ a ตัวอย่างเช่น 3 เป็นตัวตามหลังของ 2 และ 7 คือตัวตามหลังของ 6 เนื่องด้วยตัวตามหลังนี้ ค่าของ a + b ใด ๆ สามารถมองว่าเป็นตัวตามหลังลำดับที่ b ของ a ทำให้การบวกกลายเป็นการตามหลังแบบวนซ้ำ ตัวอย่างเช่น 6 + 2 คือ 8 เพราะ 8 เป็นตัวตามหลังของ 7 ซึ่งก็เป็นตัวตามหลังของ 6 อีกทีหนึ่ง ทำให้ 8 เป็นตัวตามหลังลำดับที่ 2 ของ 6

หน่วย

ในการบวกปริมาณทางกายภาพซึ่งมีหน่วยวัดกำกับอยู่ ปริมาณเหล่านั้นจะต้องอยู่ในหน่วยเดียวกัน ตัวอย่างเช่น ระยะความยาว 5 ฟุต หากถูกขยายออกไปอีก 2 นิ้ว ผลบวกของความยาวคือ 62 นิ้ว เนื่องจากความยาว 60 นิ้วมีความหมายเหมือนกับความยาว 5 ฟุต ในอีกทางหนึ่ง หน่วยที่ไม่สามารถเปรียบเทียบกันได้ก็จะไม่สามารถรวมกันได้ เช่นการบวกระยะทาง 3 เมตรกับพื้นที่ 4 ตารางเมตร การบวกเช่นนี้จะไร้ความหมาย การพิจารณาดังกล่าวนี้เป็นรากฐานของการวิเคราะห์เชิงมิติ (dimensional analysis)

ใกล้เคียง