อ้างอิง ของ การออกกำลังกาย

  1. Kylasov, A; Gavrov, S (2011). Diversity Of Sport: non-destructive evaluation. Paris: UNESCO: Encyclopedia of Life Support Systems. pp. 462–491. ISBN 978-5-8931-7227-0.CS1 maint: Uses authors parameter (link)
  2. Stampfer, M; Hu, F; Manson, J; Rimm, E; Willett, W (2000). "Primary prevention of coronary heart disease in women through diet and lifestyle". The New England Journal of Medicine. 343 (1): 16–23.CS1 maint: Uses authors parameter (link)
  3. Hu; F; Manson, J; Stampfer, M; Graham, C และคณะ (2001). "Diet, lifestyle, and the risk of type 2 diabetes mellitus in women". The New England Journal of Medicine. 345 (11): 800–800.CS1 maint: Uses authors parameter (link) CS1 maint: Explicit use of et al. (link)
  4. 1 2 3 Bergstrom, Kristine; Muse, Toby; Tsai, Michelle; Strangio, Sebastian. "Fitness for Foreigners". Slate Magazine. Slate Magazine. สืบค้นเมื่อ 2016-12-05.
  5. 1 2 3 4 5 6 7 8 9 National Institutes of Health, National Heart, Lung, and Blood Institute (June 2006). "Your Guide to Physical Activity and Your Heart" (PDF). U.S. Department of Health and Human Services.CS1 maint: Multiple names: authors list (link)
  6. Wilmore, J; Knuttgen, H (2003). "Aerobic Exercise and Endurance Improving Fitness for Health Benefits". The Physician and Sportsmedicine. 31 (5): 45. doi:10.3810/psm.2003.05.367.CS1 maint: Uses authors parameter (link)
  7. De Vos, N; Singh, N; Ross, D; Stavrinos, T (2005). "Optimal Load for Increasing Muscle Power During Explosive Resistance Training in Older Adults". The Journals of Gerontology. 60A (5): 638–647. doi:10.1093/gerona/60.5.638.CS1 maint: Uses authors parameter (link)
  8. O'Connor D.; Crowe M.; Spinks W. (2005). "Effects of static stretching on leg capacity during cycling". Turin. 46 (1): 52–56.
  9. "What Is Fitness?" (PDF). The CrossFit Journal. October 2002. p. 4. สืบค้นเมื่อ 2010-09-12.
  10. de Souza Nery S, Gomides RS, da Silva GV, de Moraes Forjaz CL, Mion D Jr, Tinucci T (2010-03-01). "Intra-Arterial Blood Pressure Response in Hypertensive Subjects during Low- and High-Intensity Resistance Exercise". Clinics. 65 (3): 271–7. doi:10.1590/S1807-59322010000300006. PMC 2845767. PMID 20360917.CS1 maint: Multiple names: authors list (link)
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Egan, B; Zierath, JR (February 2013). "Exercise metabolism and the molecular regulation of skeletal muscle adaptation". Cell Metabolism. 17 (2): 162–184. doi:10.1016/j.cmet.2012.12.012. PMID 23395166.CS1 maint: Uses authors parameter (link)
  12. Gremeaux, V; Gayda, M; Lepers, R; Sosner, P; Juneau, M; Nigam, A (December 2012). "Exercise and longevity". Maturitas. 73 (4): 312–7. doi:10.1016/j.maturitas.2012.09.012. PMID 23063021.
  13. Department Of Health And Human Services, United States (1996). "Physical Activity and Health". United States Department of Health. ISBN 9781428927940.
  14. Woods, Jeffrey A.; Wilund, Kenneth R.; Martin, Stephen A.; Kistler, Brandon M. (2011-10-29). "Exercise, Inflammation and Aging". Aging and Disease. 3 (1): 130–140. PMC 3320801. PMID 22500274.
  15. 1 2 Kyu, Hmwe H; Bachman, Victoria F; Alexander, Lily T; Mumford, John Everett; Afshin, Ashkan; Estep, Kara; Veerman, J Lennert; Delwiche, Kristen; Iannarone, Marissa L; Moyer, Madeline L; Cercy, Kelly; Vos, Theo; Murray, Christopher J L; Forouzanfar, Mohammad H (2016-08-09). "Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013". BMJ. 354: i3857. doi:10.1136/bmj.i3857. PMC 4979358. PMID 27510511.
  16. 1 2 Lee, I-Min; Shiroma, Eric J; Lobelo, Felipe; Puska, Pekka; Blair, Steven N; Katzmarzyk, Peter T (2012-07-21). "Impact of Physical Inactivity on the World's Major Non-Communicable Diseases". Lancet. 380 (9838): 219–229. doi:10.1016/S0140-6736(12)61031-9. PMC 3645500. PMID 22818936.
  17. 1 2 Dobbins, Maureen; Husson, Heather; DeCorby, Kara; LaRocca, Rebecca L (2013-02-28). Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd. doi:10.1002/14651858.cd007651.pub2.
  18. Hubal, MJ; Gordish-Dressman, H; Thompson, PD; Price, TB; Hoffman, EP; Angelopoulos, TJ; Gordon, PM; Moyna, NM; Pescatello, LS; Visich, PS; Zoeller, RF; Seip, RL; Clarkson, PM; Gordish-Dressman; Thompson; Price; Hoffman; Angelopoulos; Gordon; Moyna; Pescatello; Visich; Zoeller; Seip; Clarkson (June 2005). "Variability in muscle size and strength gain after unilateral resistance training". Medicine & Science in Sports & Exercise. 37 (6): 964–972. PMID 15947721.CS1 maint: Multiple names: authors list (link)
  19. Brutsaert, TD; Parra, EJ (2006). "What makes a champion? Explaining variation in human athletic performance". Respiratory Physiology & Neurobiology. 151 (2–3): 109–123. doi:10.1016/j.resp.2005.12.013. PMID 16448865.CS1 maint: Uses authors parameter (link)
  20. Geddes, Linda (2007-07-28). "Superhuman". New Scientist. pp. 35–41.
  21. "Being active combats risk of functional problems".
  22. Wrotniak, B. H; Epstein, L. H; Dorn, J. M; Jones, K. E; Kondilis, V. A (2006). "The Relationship Between Motor Proficiency and Physical Activity in Children". Pediatrics. 118 (6): e1758. doi:10.1542/peds.2006-0742. PMID 17142498.
  23. Milanović, Zoran; Sporiš, Goran; Weston, Matthew (2015). "Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials". Sports Medicine. 45 (10): 1469. doi:10.1007/s40279-015-0365-0. PMID 26243014.
  24. 1 2 "American Heart Association Recommendations for Physical Activity in Adults". American Heart Association. 2017-12-14. สืบค้นเมื่อ 2018-05-05.
  25. Lumeng, Julie C (2006). "Small-group physical education classes result in important health benefits". The Journal of Pediatrics. 148 (3): 418–419. doi:10.1016/j.jpeds.2006.02.025.
  26. Ahaneku, Joseph E.; Nwosu, Cosmas M.; Ahaneku, Gladys I. (2000). "Academic Stress and Cardiovascular Health". Academic Medicine. 75 (6): 567–568. doi:10.1097/00001888-200006000-00002.
  27. Fletcher, G. F; Balady, G; Blair, S. N; Blumenthal, J; Caspersen, C; Chaitman, B; Epstein, S; Froelicher, E. S. S; Froelicher, V. F; Pina, I. L; Pollock, M. L (1996). "Statement on Exercise: Benefits and Recommendations for Physical Activity Programs for All Americans: A Statement for Health Professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association". Circulation. 94 (4): 857–62. doi:10.1161/01.CIR.94.4.857. PMID 8772712.
  28. Goodman, C. C.; Kapasi, Z. F. (2002). "The effect of exercise on the immune system". Rehabilitation Oncology.
  29. 1 2 3 Gleeson, M (August 2007). "Immune function in sport and exercise". J. Appl. Physiol. 103 (2): 693–9. doi:10.1152/japplphysiol.00008.2007. PMID 17303714.
  30. Swardfager, W (2012). "Exercise intervention and inflammatory markers in coronary artery disease: a meta-analysis". Am. Heart J. 163 (4): 666–76. doi:10.1016/j.ahj.2011.12.017. PMID 22520533.
  31. Ballard-Barbash, R; Friedenreich, CM; Courneya, KS; Siddiqi, SM; McTiernan, A; Alfano, CM (2012). "Physical Activity, Biomarkers, and Disease Outcomes in Cancer Survivors: A Systematic Review". JNCI Journal of the National Cancer Institute. 104 (11): 815–840. doi:10.1093/jnci/djs207. PMC 3465697. PMID 22570317. There was consistent evidence from 27 observational studies that physical activity is associated with reduced all-cause, breast cancer - specific, and colon cancer - specific mortality. There is currently insufficient evidence regarding the association between physical activity and mortality for survivors of other cancers.CS1 maint: Uses authors parameter (link)
  32. Grande, AJ; Silva, V; Maddocks, M (September 2015). "Exercise for cancer cachexia in adults: Executive summary of a Cochrane Collaboration systematic review". Journal of Cachexia, Sarcopenia and Muscle. 6 (3): 208–11. doi:10.1002/jcsm.12055. PMC 4575551. PMID 26401466.CS1 maint: Uses authors parameter (link)
  33. 1 2 Sadeghi, M; Keshavarz-Fathi, M; Baracos, V; Arends, J; Mahmoudi, M; Rezaei, N (July 2018). "Cancer cachexia: Diagnosis, assessment, and treatment". Crit. Rev. Oncol. Hematol. 127: 91–104. doi:10.1016/j.critrevonc.2018.05.006. PMID 29891116.CS1 maint: Uses authors parameter (link)
  34. 1 2 Solheim, TS; Laird, BJ; Balstad, TR; Bye, A; Stene, G; Baracos, V; Strasser, F; Griffiths, G; Maddocks, M; Fallon, M; Kaasa, S; Fearon, K (February 2018). "Cancer cachexia: rationale for the MENAC (Multimodal-Exercise, Nutrition and Anti-inflammatory medication for Cachexia) trial". BMJ Support Palliat Care. doi:10.1136/bmjspcare-2017-001440. PMID 29440149.CS1 maint: Uses authors parameter (link)
  35. 1 2 3 4 Erickson, KI; Hillman, CH; Kramer, AF (August 2015). "Physical activity, brain, and cognition". Current Opinion in Behavioral Sciences. 4: 27–32. doi:10.1016/j.cobeha.2015.01.005. Research in children finds that higher fit and more active preadolescent children show greater hippocampal and basal ganglia volume, greater white matter integrity, elevated and more efficient patterns of brain activity, and superior cognitive performance and scholastic achievement. Higher fit and more physically active older adults show greater hippocampal, prefrontal cortex, and basal ganglia volume, greater functional brain connectivity, greater white matter integrity, more efficient brain activity, and superior executive and memory function. ...
    Cognitive performance: Cross-sectional, observational, and randomized clinical trials of PA in late adulthood have demonstrated that engaging in PA may preserve and/or enhance cognitive function even in cognitively impaired individuals (e.g., [18]). Summaries of these studies can now be found in several meta-analyses, most of which confirm that PA positively influences cognitive function in late adulthood with small to moderate sized effects [19]. In a meta-analysis of 18 randomized PA trials, engaging in moderate intensity PA resulted in enhanced cognitive function across all cognitive domains examined, but with the largest effect sizes for indices of executive function [20]. Meta-analyses of longitudinal observational studies have also confirmed that self-reported engagement in PA is associated with nearly a 40% reduced risk of experiencing cognitive decline over several years [21]. These, and other studies, make a convincing argument that both continuing to engage in, and starting to engage in, PA in late adulthood may have a profound effect on maintaining cognitive health, improving function, and reducing the risk of developing cognitive impairment.
    Brain structure: There have been now more than 30 published studies of PA or fitness on brain structure in older adults (>60 years) with the majority showing positive associations (see [22]). Such effects are important since increasing age is associated with brain atrophy and loss of volume, which precedes and predicts conversion to dementia. Higher aerobic fitness levels have been associated with larger gray matter volumes in older adults in several areas including the frontal cortex [23,24], hippocampus [25,26], and caudate nucleus [27]. Longitudinal observational studies have also shown that greater amounts of PA are associated with larger gray matter volumes in these regions, and greater volume is, in turn, associated with a reduced risk of cognitive impairment [28]. These cross-sectional and observational results in older adults are further supported by clinical trials that have shown that six-months to one-year of regular PA is associated with an increase in both frontal cortex [29••,30] and hippocampal volume ... These effects on gray matter volume are accompanied by differences found in white matter integrity. For example, several studies have reported that higher cardiorespiratory fitness levels and PA are associated with greater white matter integrity along several tracts linking frontal and subcortical areas [34-36] and that greater changes in fitness after an intervention was associated with an increase in white matter integrity [37]. In sum, there is now convincing evidence that PA and fitness influence brain structure, characterized by both gray matter volume and white matter integrity, in late adulthood.CS1 maint: Uses authors parameter (link)
  36. 1 2 3 Paillard, T; Rolland, Y; de Souto Barreto, P (July 2015). "Protective Effects of Physical Exercise in Alzheimer's Disease and Parkinson's Disease: A Narrative Review". J Clin Neurol. 11 (3): 212–219. doi:10.3988/jcn.2015.11.3.212. PMC 4507374. PMID 26174783. Aerobic physical exercise (PE) activates the release of neurotrophic factors and promotes angiogenesis, thereby facilitating neurogenesis and synaptogenesis, which in turn improve memory and cognitive functions. ... Exercise limits the alteration in dopaminergic neurons in the substantia nigra and contributes to optimal functioning of the basal ganglia involved in motor commands and control by adaptive mechanisms involving dopamine and glutamate neurotransmission.CS1 maint: Uses authors parameter (link)
  37. 1 2 McKee, AC; Daneshvar, DH; Alvarez, VE; Stein, TD (January 2014). "The neuropathology of sport". Acta Neuropathol. 127 (1): 29–51. doi:10.1007/s00401-013-1230-6. PMC 4255282. PMID 24366527. The benefits of regular exercise, physical fitness and sports participation on cardiovascular and brain health are undeniable ... Exercise also enhances psychological health, reduces age-related loss of brain volume, improves cognition, reduces the risk of developing dementia, and impedes neurodegeneration.CS1 maint: Uses authors parameter (link)
  38. 1 2 Denham, J; Marques, FZ; O'Brien, BJ; Charchar, FJ (February 2014). "Exercise: putting action into our epigenome". Sports Med. 44 (2): 189–209. doi:10.1007/s40279-013-0114-1. PMID 24163284. Aerobic physical exercise produces numerous health benefits in the brain. Regular engagement in physical exercise enhances cognitive functioning, increases brain neurotrophic proteins, such as brain-derived neurotrophic factor (BDNF), and prevents cognitive diseases [76-78]. Recent findings highlight a role for aerobic exercise in modulating chromatin remodelers [21, 79-82]. ... These results were the first to demonstrate that acute and relatively short aerobic exercise modulates epigenetic modifications. The transient epigenetic modifications observed due to chronic running training have also been associated with improved learning and stress-coping strategies, epigenetic changes and increased c-Fos-positive neurons ... Nonetheless, these studies demonstrate the existence of epigenetic changes after acute and chronic exercise and show they are associated with improved cognitive function and elevated markers of neurotrophic factors and neuronal activity (BDNF and c-Fos). ... The aerobic exercise training-induced changes to miRNA profile in the brain seem to be intensity-dependent [164]. These few studies provide a basis for further exploration into potential miRNAs involved in brain and neuronal development and recovery via aerobic exercise.CS1 maint: Uses authors parameter (link)
  39. 1 2 3 4 Gomez-Pinilla, F; Hillman, C (January 2013). "The influence of exercise on cognitive abilities". Compr. Physiol. 3 (1): 403–428. doi:10.1002/cphy.c110063. PMC 3951958. PMID 23720292. A second recent meta-analysis (162) corroborated Colcombe and Kramer’s (30) findings, in that aerobic exercise was related to attention, processing speed, memory, and cognitive control. ... Normal aging results in the loss of brain tissue (31), with markedly larger tissue loss evidenced in the frontal, temporal, and parietal cortices (16, 58, 149). As such, cognitive functions subserved by these brain regions (such as those involved in cognitive control and memory) are expected to decay more dramatically than other aspects of cognition. Specifically, age-related decreases in gray matter volume have been associated with decrements in a variety of cognitive control processes. ... Decreases in gray matter volume may result from several factors including loss in the number of neurons, neuronal shrinkage, reduction in dendritic arborization, and alterations in glia (158). Further, decreases in white matter (brain tissue composed primarily of myelinated nerve fibers) volume, which represent changes in connectivity between neurons, also occur as a result of aging. Loss of white matter volume further relates to performance decrements on a host of cognitive tasks ... aerobic fitness relates to larger hippocampal volume (23) and better relational memory performance (24), during preadolescent childhood. ... Specifically, those assigned to the aerobic training group demonstrated increases in gray matter in the frontal lobes, including the dorsal anterior cingulate cortex (ACC), supplementary motor area, middle frontal gyrus, dorsolateral region of the right inferior frontal gyrus, and the left superior temporal lobe (32). White matter volume changes were also evidenced for the aerobic fitness group with increases in white matter tracts within the anterior third of the corpus callosum (32). ... In addition, aerobic fitness has been shown to promote better functioning of brain, especially in neural networks involved in cognitive control of inhibition and attention (33). ... In addition to BDNF, the actions of IGF-1 and vascular endothelial growth factor (VEGF) (54) are considered essential for the angiogenic and neurogenic effects of exercise in the brain. ... Randomized and crossover clinical trials demonstrate the efficacy of aerobic or resistance training exercise (2-4 months) as a treatment for depression in both young and older individuals. ... exercise seems to have both preventative and therapeutic effects on the course of depressionCS1 maint: Uses authors parameter (link)
  40. Erickson, KI; Leckie, RL; Weinstein, AM (September 2014). "Physical activity, fitness, and gray matter volume". Neurobiol. Aging. 35 Suppl 2: S20–528. doi:10.1016/j.neurobiolaging.2014.03.034. PMC 4094356. PMID 24952993. สืบค้นเมื่อ 2014-12-09. We conclude that higher cardiorespiratory fitness levels are routinely associated with greater gray matter volume in the prefrontal cortex and hippocampus and less consistently in other regions. We also conclude that physical activity is associated with greater gray matter volume in the same regions that are associated with cardiorespiratory fitness including the prefrontal cortex and hippocampus. ... Meta-analyses (Colcombe and Kramer, 2003; Smith et al., 2010) suggest that the effects of exercise on the brain might not be uniform across all regions and that some brain areas, specifically those areas supporting executive functions, might be more influenced by participation in exercise than areas not as critically involved in executive functions. ... The effects appear to be general in the sense that many different cognitive domains are improved after several months of aerobic exercise, but specific in the sense that executive functions are improved more than other cognitive domains. ... physical activity and exercise may reduce the risk for AD (Barnes and Yaffe, 2011; Podewils et al., 2005; Sofi et al., 2011)  ... Erickson et al. (2010) reported that greater amounts of physical activity were associated with greater gray matter volume 9-years later in the prefrontal cortex, anterior cingulate, parietal cortex, cerebellum, and hippocampus. ... higher fitness levels (VO2max) were associated with larger hippocampal volumes, better executive function, and faster processing speed. ... Verstynen et al. (2012) examined the association between cardiorespiratory fitness levels (VO2max) and the size of the basal ganglia ... Verstynen et al. (2012) found that higher fitness levels were associated with greater volume of the caudate nucleus and nucleus accumbens, and in turn, greater volumes were associated with better performance on a task-switching paradigm. ... That is, higher physical activity levels mitigated the detrimental effects of lifetime stress on the size of the hippocampus. ... The few randomized interventions published thus far have found results highly overlapping with the cross-sectional studies and suggest that the prefrontal cortex and hippocampus remain pliable in late life and that moderate intensity exercise for 6 months-1 year is sufficient for changing the size of these areas.CS1 maint: Uses authors parameter (link)
  41. 1 2 Guiney, H; Machado, L (February 2013). "Benefits of regular aerobic exercise for executive functioning in healthy populations". Psychon Bull Rev. 20 (1): 73–86. doi:10.3758/s13423-012-0345-4. PMID 23229442. Executive functions are strategic in nature and depend on higher-order cognitive processes that underpin planning, sustained attention, selective attention, resistance to interference, volitional inhibition, working memory, and mental flexibility ... Data to date from studies of aging provide strong evidence of exercise-linked benefits related to task switching, selective attention, inhibition of prepotent responses, and working memory capacity; furthermore, cross-sectional fitness data suggest that working memory updating could potentially benefit as well. In young adults, working memory updating is the main executive function shown to benefit from regular exercise, but cross-sectional data further suggest that task-switching and post-error performance may also benefit. In children, working memory capacity has been shown to benefit, and cross-sectional data suggest potential benefits for selective attention and inhibitory control. ... Support for the idea that higher levels of aerobic activity may be associated with superior brain structure has been gained through cross-sectional studies in older adults and children (for a recent review, see Voss, Nagamatsu, et al., 2011). ... only those in the aerobic exercise group exhibited improved connectivity between the left and right prefrontal cortices, two areas that are crucial to the effective functioning of the fronto-executive network. ... Together, these studies provide evidence that regular aerobic exercise benefits control over responses during selective attention in older adults. ... aerobic fitness is a good predictor of performance on tasks that rely relatively heavily on inhibitory control over prepotent responses (e.g., Colcombe et al., 2004, Study 1; Prakash et al., 2011) and also that regular aerobic exercise improves performance on such tasks ... Overall, the results from the span and Sternberg tasks suggest that regular exercise can also confer benefits for the volume of information that children and older adults can hold in mind at one time.CS1 maint: Uses authors parameter (link)
  42. 1 2 Erickson, KI; Miller, DL; Roecklein, KA (2012). "The aging hippocampus: interactions between exercise, depression, and BDNF". Neuroscientist. 18 (1): 82–97. doi:10.1177/1073858410397054. PMC 3575139. PMID 21531985. Late adulthood is associated with increased hippocampal atrophy and dysfunction.  ... However, there is strong evidence that decreased BDNF is associated with age-related hippocampal dysfunction, memory impairment, and increased risk for depression, whereas increasing BDNF by aerobic exercise appears to ameliorate hippocampal atrophy, improve memory function, and reduce depression. ... For example, longitudinal studies have reported between 1% and 2% annual hippocampal atrophy in adults older than 55 years without dementia ... Over a nine-year period, greater amounts of physical activity in the form of walking are associated with greater gray matter volume in several regions including prefrontal, temporal, and hippocampal areas. ... The prefrontal cortex and hippocampus deteriorate in late adulthood, preceding and leading to deficits in executive and memory function. We examined in this review the evidence that age-related changes in BDNF might at least partially explain hippocampal atrophy and increased risk for memory impairment. We can conclude that 1) decreases in BDNF protein expression are associated with poorer hippocampal function and increased rates of geriatric depression and AD. ... 3) Aerobic exercise enhances executive and memory function and reduces hippocampal atrophy in late adulthood, and this may be partially mediated through a BDNF pathway.CS1 maint: Uses authors parameter (link)
  43. 1 2 Buckley, J; Cohen, JD; Kramer, AF; McAuley, E; Mullen, SP (2014). "Cognitive control in the self-regulation of physical activity and sedentary behavior". Front Hum Neurosci. 8: 747. doi:10.3389/fnhum.2014.00747. PMC 4179677. PMID 25324754. Recent theory (e.g., Temporal Self-Regulation Theory; Hall and Fong, 2007, 2010, 2013) and evidence suggest that the relation between physical activity and cognitive control is reciprocal (Daly et al., 2013). Most research has focused on the beneficial effects of regular physical activity on executive functions-the set of neural processes that define cognitive control. Considerable evidence shows that regular physical activity is associated with enhanced cognitive functions, including attention, processing speed, task switching, inhibition of prepotent responses and declarative memory (for reviews see Colcombe and Kramer, 2003; Smith et al., 2010; Guiney and Machado, 2013; McAuley et al., 2013). Recent research demonstrates a dose-response relationship between fitness and spatial memory (Erickson et al., 2011)  ... The effects of physical activity on cognitive control appear to be underpinned by a variety of brain processes including: increased hippocampal volume, increased gray matter density in the prefrontal cortex (PFC), upregulation of neurotrophins and greater microvascular density ... Together, this research suggests that an improvement in control processes, such as attention and inhibition or interference control, is associated with an improvement in self-regulation of physical activity. ... Hoang et al. (2013) found that young adults who initially exhibited low levels of physical activity and remained relatively inactive for 25 years had nearly twofold greater odds of impaired executive function compared with those who exhibited higher activity levels; very-low physical activity patterns were associated with even more pronounced declines in executive functioning. … sedentary behavior indirectly led to poor executive function through depressive symptoms (Vance et al., 2005). … sedentary individuals display less capacity to quickly and accurately switch between tasks.CS1 maint: Uses authors parameter (link)
  44. 1 2 Cox, EP; O'Dwyer, N; Cook, R; Vetter, M; Cheng, HL; Rooney, K; O'Connor, H (August 2016). "Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review". J. Sci. Med. Sport. 19 (8): 616–628. doi:10.1016/j.jsams.2015.09.003. PMID 26552574. A range of validated platforms assessed CF across three domains: executive function (12 studies), memory (four studies) and processing speed (seven studies). Habitual PA was assessed via questionnaire/self-report methods (n=13, 8 validated) or accelerometers (n=1). In studies of executive function, five found a significant ES in favour of higher PA, ranging from small to large. Although three of four studies in the memory domain reported a significant benefit of higher PA, there was only one significant ES, which favoured low PA. Only one study examining processing speed had a significant ES, favouring higher PA.
    CONCLUSIONS: A limited body of evidence supports a positive effect of PA on CF in young to middle-aged adults. Further research into this relationship at this age stage is warranted. ...
    Significant positive effects of PA on cognitive function were found in 12 of the 14 included manuscripts, the relationship being most consistent for executive function, intermediate for memory and weak for processing speed.CS1 maint: Uses authors parameter (link)
  45. 1 2 3 Schuch, FB; Vancampfort, D; Rosenbaum, S; Richards, J; Ward, PB; Stubbs, B (July 2016). "Exercise improves physical and psychological quality of life in people with depression: A meta-analysis including the evaluation of control group response". Psychiatry Res. 241: 47–54. doi:10.1016/j.psychres.2016.04.054. PMID 27155287. Exercise has established efficacy as an antidepressant in people with depression. ... Exercise significantly improved physical and psychological domains and overall QoL. ... The lack of improvement among control groups reinforces the role of exercise as a treatment for depression with benefits to QoL.CS1 maint: Uses authors parameter (link)
  46. Pratali, L; Mastorci, F; Vitiello, N; Sironi, A; Gastaldelli, A; Gemignani, A (November 2014). "Motor Activity in Aging: An Integrated Approach for Better Quality of Life". Int. Sch. Res. Notices. 2014: 257248. doi:10.1155/2014/257248. PMC 4897547. PMID 27351018. Research investigating the effects of exercise on older adults has primarily focused on brain structural and functional changes with relation to cognitive improvement. In particular, several cross-sectional and intervention studies have shown a positive association between physical activity and cognition in older persons [86] and an inverse correlation with cognitive decline and dementia [87]. Older adults enrolled in a 6-month aerobic fitness intervention increased brain volume in both gray matter (anterior cingulate cortex, supplementary motor area, posterior middle frontal gyrus, and left superior temporal lobe) and white matter (anterior third of corpus callosum) [88]. In addition, Colcombe and colleagues showed that older adults with higher cardiovascular fitness levels are better at activating attentional resources, including decreased activation of the anterior cingulated cortex. One of the possible mechanisms by which physical activity may benefit cognition is that physical activity maintains brain plasticity, increases brain volume, stimulates neurogenesis and synaptogenesis, and increases neurotrophic factors in different areas of the brain, possibly providing reserve against later cognitive decline and dementia [89, 90].CS1 maint: Uses authors parameter (link)
  47. Cunha, GS; Ribeiro, JL; Oliveira, AR (June 2008). "[Levels of beta-endorphin in response to exercise and overtraining]". Arq Bras Endocrinol Metabol (in Portuguese). 52 (4): 589–598. PMID 18604371. Interestingly, some symptoms of OT are related to beta-endorphin (beta-end (1-31)) effects. Some of its effects, such as analgesia, increasing lactate tolerance, and exercise-induced euphoria, are important for training.CS1 maint: Uses authors parameter (link) CS1 maint: Unrecognized language (link)
  48. Boecker, H; Sprenger, T; Spilker, ME; Henriksen, G; Koppenhoefer, M; Wagner, KJ; Valet, M; Berthele, A; Tolle, TR (2008). "The runner's high: opioidergic mechanisms in the human brain". Cereb. Cortex. 18 (11): 2523–2531. doi:10.1093/cercor/bhn013. PMID 18296435. The runner's high describes a euphoric state resulting from long-distance running.CS1 maint: Uses authors parameter (link)
  49. 1 2 3 4 Josefsson, T; Lindwall, M; Archer, T (2014). "Physical exercise intervention in depressive disorders: meta-analysis and systematic review". Scand J Med Sci Sports. 24 (2): 259–272. doi:10.1111/sms.12050. PMID 23362828. Physical activity has also become increasingly and firmly associated with improvements in mental health and psychological well-being (Mutrie, 2000; Landers & Arent, 2007). In particular, exercise is believed to be effective in preventing depression and also to significantly reduce depressive symptoms in clinical as well as in nonclinical populations (O’Neal et al., 2000; Landers & Arent, 2007). Several correlational studies show that exercise is negatively related to depressive symptoms (e.g., Galper et al., 2006; Hassmén et al., 2000). Moreover, a considerably large number of intervention studies have by now investigated the effect of various exercise programs on depression and the vast majority of them indicate that exercise significantly reduces depression (e.g., Blumenthal et al., 2007; Martinsen et al., 1985; Singh et al., 1997). ... To date, it is not possible to determine exactly how effective exercise is in reducing depression symptoms in clinical and nonclinical depressed populations, respectively. However, the results from the present meta-analysis as well as from seven earlier meta-analyses (North et al., 1990; Craft & Landers, 1998; Lawlor & Hopker, 2001; Stathopoulou et al., 2006; Mead et al., 2009; Rethorst et al., 2009; Krogh et al., 2011) indicate that exercise has a moderate to large antidepressant effect. Some meta-analytic results (e.g., Rethorst et al., 2009) suggest that exercise may be even more efficacious for clinically depressed people. ... In short, our final conclusion is that exercise may well be recommended for people with mild and moderate depression who are willing, motivated, and physically healthy enough to engage in such a program.CS1 maint: Uses authors parameter (link)
  50. 1 2 3 Rosenbaum, S; Tiedemann, A; Sherrington, C; Curtis, J; Ward, PB (2014). "Physical activity interventions for people with mental illness: a systematic review and meta-analysis". J Clin Psychiatry. 75 (9): 964–974. doi:10.4088/JCP.13r08765. PMID 24813261. This systematic review and meta-analysis found that physical activity reduced depressive symptoms among people with a psychiatric illness. The current meta-analysis differs from previous studies, as it included participants with depressive symptoms with a variety of psychiatric diagnoses (except dysthymia and eating disorders). ... This review provides strong evidence for the antidepressant effect of physical activity; however, the optimal exercise modality, volume, and intensity remain to be determined. ...
    Conclusion
    Few interventions exist whereby patients can hope to achieve improvements in both psychiatric symptoms and physical health simultaneously without significant risks of adverse effects. Physical activity offers substantial promise for improving outcomes for people living with mental illness, and the inclusion of physical activity and exercise programs within treatment facilities is warranted given the results of this review.CS1 maint: Uses authors parameter (link)
  51. 1 2 Szuhany, KL; Bugatti, M; Otto, MW (October 2014). "A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor". J Psychiatr Res. 60C: 56–64. doi:10.1016/j.jpsychires.2014.10.003. PMC 4314337. PMID 25455510. Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). ... Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humansCS1 maint: Uses authors parameter (link)
  52. Lees, C; Hopkins, J (2013). "Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: a systematic review of randomized control trials". Prev Chronic Dis. 10: E174. doi:10.5888/pcd10.130010. PMC 3809922. PMID 24157077. This omission is relevant, given the evidence that aerobic-based physical activity generates structural changes in the brain, such as neurogenesis, angiogenesis, increased hippocampal volume, and connectivity (12,13). In children, a positive relationship between aerobic fitness, hippocampal volume, and memory has been found (12,13). ... Mental health outcomes included reduced depression and increased self-esteem, although no change was found in anxiety levels (18). ... This systematic review of the literature found that [aerobic physical activity (APA)] is positively associated with cognition, academic achievement, behavior, and psychosocial functioning outcomes. Importantly, Shephard also showed that curriculum time reassigned to APA still results in a measurable, albeit small, improvement in academic performance (24).  ... The actual aerobic-based activity does not appear to be a major factor; interventions used many different types of APA and found similar associations. In positive association studies, intensity of the aerobic activity was moderate to vigorous. The amount of time spent in APA varied significantly between studies; however, even as little as 45 minutes per week appeared to have a benefit.CS1 maint: Uses authors parameter (link)
  53. 1 2 3 4 Mura, G; Moro, MF; Patten, SB; Carta, MG (2014). "Exercise as an add-on strategy for the treatment of major depressive disorder: a systematic review". CNS Spectr. 19 (6): 496–508. doi:10.1017/S1092852913000953. PMID 24589012. Considered overall, the studies included in the present review showed a strong effectiveness of exercise combined with antidepressants. ...
    Conclusions
    This is the first review to have focused on exercise as an add-on strategy in the treatment of MDD. Our findings corroborate some previous observations that were based on few studies and which were difficult to generalize.41,51,73,92,93 Given the results of the present article, it seems that exercise might be an effective strategy to enhance the antidepressant effect of medication treatments. Moreover, we hypothesize that the main role of exercise on treatment-resistant depression is in inducing neurogenesis by increasing BDNF expression, as was demonstrated by several recent studies.CS1 maint: Uses authors parameter (link)
  54. 1 2 3 4 Ranjbar, E; Memari, AH; Hafizi, S; Shayestehfar, M; Mirfazeli, FS; Eshghi, MA (June 2015). "Depression and Exercise: A Clinical Review and Management Guideline". Asian J. Sports Med. 6 (2): e24055. doi:10.5812/asjsm.6(2)2015.24055. PMC 4592762. PMID 26448838. Keeping in mind that exercise shows no medication side effects such as withdrawal symptoms (20), weight gain, dry mouth or insomnia (21), but shows potential health benefits such as weight reduction, it is highly recommended to use exercise as an adjunctive treatment for depression (22). New findings confirm that exercise can be recommended as a first-line treatment for mild to moderate depression; as an adjunct to medications (23) ; as an alternative to cognitive behavioral therapy (11) ; and in preventing depression in clinical as well as healthy populations (24-26). ... Although recent findings have shown that exercise can decrease depressive symptoms, there are still many questions and limitations to wider application of exercise in depression. For instance, there are deficiencies in methodological planning such as uncontrolled nonrandomized trials, small sample sizes, inadequate allocation concealment, lack of intention-to-treat analyses, non-blinded outcome assessments, and inclusion of subjects without clinical diagnosis that limit the interpretability of research outcomes (53).
    Box 1: Patients with Depression Who May Particularly Benefit From Exercise Programs
    Box 2: Depressive Disorders Other Than Major Depression That May Benefit From Exercise Programs
    Box 3: The Characteristics of an Exercise Program that will Maximize the Anti-depressive PropertiesCS1 maint: Uses authors parameter (link)
  55. Den Heijer, AE; Groen, Y; Tucha, L; Fuermaier, AB; Koerts, J; Lange, KW; Thome, J; Tucha, O (July 2016). "Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review". J. Neural. Transm. (Vienna). doi:10.1007/s00702-016-1593-7. PMID 27400928. Cardio exercise seems acutely beneficial regarding various executive functions (e.g., impulsivity), response time and several physical measures. Beneficial chronic effects of cardio exercise were found on various functions as well, including executive functions, attention and behavior. The acute and chronic effects of non-cardio exercise remain more questionable but seem predominantly positive too. Research provides evidence that physical exercise represents a promising alternative or additional treatment option for patients with ADHD. Acute and chronic beneficial effects of especially cardio exercise were reported with regard to several cognitive, behavioral, and socio-emotional functions.
    Cardio exercise: chronic effects
    Cardio exercise (e.g., running and jumping) has also been linked to longer lasting effects on cognition in children with ADHD, resulting in improved attention (including auditory sustained attention and selective attention/information processing), executive functioning (including set shifting, (accuracy of) response inhibition and planning), verbal working memory, and cognitive speed (Chang et al. 2014; Choi et al. 2014; Gapin and Etnier 2010; Kang et al. 2011; Smith et al. 2013; Verret et al. 2012; Ziereis and Jansen 2015). However, a lack of robustness of chronic effects on cognition after cardio exercise is shown by some studies not reporting affected functions [e.g., (working) memory], and by studies not confirming significant beneficial long-term effects in the areas of inhibition, processing speed, planning, memory span, and continuous motor timing (Gapin and Etnier 2010; Smith et al. 2013). The lack of agreement in findings might partly be explained by the small sample sizes examined in the latter two studies (n = 14 and n = 18, respectively, which is less than the requested n = 34 for a one-factorial within subject design) and their consequential low statistical power. ...
    It is assumed that physical exercise entails similar neurobiological effects as stimulants (e.g., increased availability of monoaminergic catecholamines in the brain, Fritz and O’Connor 2016; Wigal et al. 2013) and that these effects result in improved functioning in overlapping areas of cognition. A number of studies even showed (cognitive) gains of physical exercise on top of medication treatment (i.e., when children were on stimulant medication during the exercise bouts and tests; Choi et al. 2014; Gapin and Etnier 2010; Jensen and Kenny 2004; Kang et al. 2011; Maddigan et al. 2003; Mahon et al. 2008; McKune et al. 2003; Tantillo et al. 2002; Verret et al. 2012).CS1 maint: Uses authors parameter (link)
  56. Kamp, CF; Sperlich, B; Holmberg, HC (July 2014). "Exercise reduces the symptoms of attention-deficit/hyperactivity disorder and improves social behaviour, motor skills, strength and neuropsychological parameters". Acta Paediatr. 103 (7): 709–14. doi:10.1111/apa.12628. PMID 24612421. สืบค้นเมื่อ 2015-03-14. The present review summarises the impact of exercise interventions (1-10 weeks in duration with at least two sessions each week) on parameters related to ADHD in 7-to 13-year-old children. We may conclude that all different types of exercise (here yoga, active games with and without the involvement of balls, walking and athletic training) attenuate the characteristic symptoms of ADHD and improve social behaviour, motor skills, strength and neuropsychological parameters without any undesirable side effects. Available reports do not reveal which type, intensity, duration and frequency of exercise is most effective in this respect and future research focusing on this question with randomised and controlled long-term interventions is warranted.CS1 maint: Uses authors parameter (link)
  57. Lynch, WJ; Peterson, AB; Sanchez, V; Abel, J; Smith, MA (September 2013). "Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis". Neurosci Biobehav Rev. 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. [exercise] efficacy may be related to its ability to normalize glutamatergic and dopaminergic signaling and reverse drug-induced changes in chromatin via epigenetic interactions with brain-derived neurotrophic factor (BDNF) in the reward pathway. ... these data show that exercise can affect dopaminergic signaling at many different levels, which may underlie its ability to modify vulnerability during drug use initiation. Exercise also produces neuroadaptations that may influence an individual's vulnerability to initiate drug use. Consistent with this idea, chronic moderate levels of forced treadmill running blocks not only subsequent methamphetamine-induced conditioned place preference, but also stimulant-induced increases in dopamine release in the NAc (Chen et al., 2008) and striatum (Marques et al., 2008). ... [These] findings indicate the efficacy of exercise at reducing drug intake in drug-dependent individuals ... wheel running [reduces] methamphetamine self-administration under extended access conditions (Engelmann et al., 2013)  ... These findings suggest that exercise may "magnitude"-dependently prevent the development of an addicted phenotype possibly by blocking/reversing behavioral and neuro-adaptive changes that develop during and following extended access to the drug. ... Exercise has been proposed as a treatment for drug addiction that may reduce drug craving and risk of relapse. Although few clinical studies have investigated the efficacy of exercise for preventing relapse, the few studies that have been conducted generally report a reduction in drug craving and better treatment outcomes (see Table 4). ... Taken together, these data suggest that the potential benefits of exercise during relapse, particularly for relapse to psychostimulants, may be mediated via chromatin remodeling and possibly lead to greater treatment outcomes.CS1 maint: Uses authors parameter (link)
  58. Olsen, CM (December 2011). "Natural rewards, neuroplasticity, and non-drug addictions". Neuropharmacology. 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. Similar to environmental enrichment, studies have found that exercise reduces self-administration and relapse to drugs of abuse (Cosgrove et al., 2002; Zlebnik et al., 2010). There is also some evidence that these preclinical findings translate to human populations, as exercise reduces withdrawal symptoms and relapse in abstinent smokers (Daniel et al., 2006; Prochaska et al., 2008), and one drug recovery program has seen success in participants that train for and compete in a marathon as part of the program (Butler, 2005). ... In humans, the role of dopamine signaling in incentive-sensitization processes has recently been highlighted by the observation of a dopamine dysregulation syndrome in some patients taking dopaminergic drugs. This syndrome is characterized by a medication-induced increase in (or compulsive) engagement in non-drug rewards such as gambling, shopping, or sex (Evans et al., 2006; Aiken, 2007; Lader, 2008).
  59. Linke, SE; Ussher, M (2015). "Exercise-based treatments for substance use disorders: evidence, theory, and practicality". Am J Drug Alcohol Abuse. 41 (1): 7–15. doi:10.3109/00952990.2014.976708. PMID 25397661. The limited research conducted suggests that exercise may be an effective adjunctive treatment for SUDs. In contrast to the scarce intervention trials to date, a relative abundance of literature on the theoretical and practical reasons supporting the investigation of this topic has been published. ... numerous theoretical and practical reasons support exercise-based treatments for SUDs, including psychological, behavioral, neurobiological, nearly universal safety profile, and overall positive health effects.CS1 maint: Uses authors parameter (link)
  60. Zhou, Y; Zhao, M; Zhou, C; Li, R (July 2015). "Sex differences in drug addiction and response to exercise intervention: From human to animal studies". Front. Neuroendocrinol. 40: 24–41. doi:10.1016/j.yfrne.2015.07.001. PMID 26182835. Collectively, these findings demonstrate that exercise may serve as a substitute or competition for drug abuse by changing ΔFosB or cFos immunoreactivity in the reward system to protect against later or previous drug use. ... As briefly reviewed above, a large number of human and rodent studies clearly show that there are sex differences in drug addiction and exercise. The sex differences are also found in the effectiveness of exercise on drug addiction prevention and treatment, as well as underlying neurobiological mechanisms. The postulate that exercise serves as an ideal intervention for drug addiction has been widely recognized and used in human and animal rehabilitation. ... In particular, more studies on the neurobiological mechanism of exercise and its roles in preventing and treating drug addiction are needed.CS1 maint: Uses authors parameter (link)
  61. Farina, N; Rusted, J; Tabet, N (January 2014). "The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review". Int Psychogeriatr. 26 (1): 9–18. doi:10.1017/S1041610213001385. PMID 23962667. Six RCTs were identified that exclusively considered the effect of exercise in AD patients. Exercise generally had a positive effect on rate of cognitive decline in AD. A meta-analysis found that exercise interventions have a positive effect on global cognitive function, 0.75 (95% CI = 0.32-1.17). ... The most prevalent subtype of dementia is Alzheimer’s disease (AD), accounting for up to 65.0% of all dementia cases ... Cognitive decline in AD is attributable at least in part to the buildup of amyloid and tau proteins, which promote neuronal dysfunction and death (Hardy and Selkoe, 2002; Karran et al., 2011). Evidence in transgenic mouse models of AD, in which the mice have artificially elevated amyloid load, suggests that exercise programs are able to improve cognitive function (Adlard et al., 2005; Nichol et al., 2007). Adlard and colleagues also determined that the improvement in cognitive performance occurred in conjunction with a reduced amyloid load. Research that includes direct indices of change in such biomarkers will help to determine the mechanisms by which exercise may act on cognition in AD.CS1 maint: Uses authors parameter (link)
  62. Rao, AK; Chou, A; Bursley, B; Smulofsky, J; Jezequel, J (January 2014). "Systematic review of the effects of exercise on activities of daily living in people with Alzheimer's disease". Am J Occup Ther. 68 (1): 50–56. doi:10.5014/ajot.2014.009035. PMID 24367955. Alzheimer’s disease (AD) is a progressive neurological disorder characterized by loss in cognitive function, abnormal behavior, and decreased ability to perform basic activities of daily living [(ADLs)] ... All studies included people with AD who completed an exercise program consisting of aerobic, strength, or balance training or any combination of the three. The length of the exercise programs varied from 12 weeks to 12 months. ... Six studies involving 446 participants tested the effect of exercise on ADL performance ... exercise had a large and significant effect on ADL performance (z = 4.07, p < .0001; average effect size = 0.80). ... These positive effects were apparent with programs ranging in length from 12 wk (Santana-Sosa et al., 2008; Teri et al., 2003) and intermediate length of 16 wk (Roach et al., 2011; Vreugdenhil et al., 2012) to 6 mo (Venturelli et al., 2011) and 12 mo (Rolland et al., 2007). Furthermore, the positive effects of a 3-mo intervention lasted 24 mo (Teri et al., 2003). ... No adverse effects of exercise on ADL performance were noted. ... The study with the largest effect size implemented a walking and aerobic program of only 30 min four times a week (Venturelli et al., 2011).CS1 maint: Uses authors parameter (link)
  63. Mattson, MP (2014). "Interventions that improve body and brain bioenergetics for Parkinson's disease risk reduction and therapy". J Parkinsons Dis. 4 (1): 1–13. doi:10.3233/JPD-130335. PMID 24473219.CS1 maint: Uses authors parameter (link)
  64. 1 2 Grazina, R; Massano, J (2013). "Physical exercise and Parkinson's disease: influence on symptoms, disease course and prevention". Rev Neurosci. 24 (2): 139–152. doi:10.1515/revneuro-2012-0087. PMID 23492553.CS1 maint: Uses authors parameter (link)
  65. van der Kolk, NM; King, LA (September 2013). "Effects of exercise on mobility in people with Parkinson's disease". Mov. Disord. 28 (11): 1587–1596. doi:10.1002/mds.25658. PMID 24132847.CS1 maint: Uses authors parameter (link)
  66. Tomlinson, CL; Patel, S; Meek, C; Herd, CP; Clarke, CE; Stowe, R; Shah, L; Sackley, CM; Deane, KH; Wheatley, K; Ives, N (September 2013). "Physiotherapy versus placebo or no intervention in Parkinson's disease". Cochrane Database Syst Rev. 9: CD002817. doi:10.1002/14651858.CD002817.pub4. PMID 24018704.CS1 maint: Uses authors parameter (link)
  67. Blondell, SJ; Hammersley-Mather, R; Veerman, JL (May 2014). "Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies". BMC Public Health. 14: 510. doi:10.1186/1471-2458-14-510. PMC 4064273. PMID 24885250. Longitudinal observational studies show an association between higher levels of physical activity and a reduced risk of cognitive decline and dementia. A case can be made for a causal interpretation. Future research should use objective measures of physical activity, adjust for the full range of confounders and have adequate follow-up length. Ideally, randomised controlled trials will be conducted. ... On the whole the results do, however, lend support to the notion of a causal relationship between physical activity, cognitive decline and dementia, according to the established criteria for causal inference.CS1 maint: Uses authors parameter (link)
  68. Cormie, P; Nowak, AK; Chambers, SK; Galvão, DA; Newton, RU (April 2015). "The potential role of exercise in neuro-oncology". Front. Oncol. 5: 85. doi:10.3389/fonc.2015.00085. PMC 4389372. PMID 25905043.CS1 maint: Uses authors parameter (link)
  69. 1 2 Cooney, GM; Dwan, K; Greig, CA; Lawlor, DA; Rimer, J; Waugh, FR; McMurdo, M; Mead, GE (September 2013). "Exercise for depression". Cochrane Database Syst. Rev. 9: CD004366. doi:10.1002/14651858.CD004366.pub6. PMID 24026850. Exercise is moderately more effective than a control intervention for reducing symptoms of depression, but analysis of methodologically robust trials only shows a smaller effect in favour of exercise. When compared to psychological or pharmacological therapies, exercise appears to be no more effective, though this conclusion is based on a few small trials.CS1 maint: Uses authors parameter (link)
  70. Brené, S; Bjørnebekk, A; Aberg, E; Mathé, AA; Olson, L; Werme, M (2007). "Running is rewarding and antidepressive". Physiol. Behav. 92 (1–2): 136–140. doi:10.1016/j.physbeh.2007.05.015. PMC 2040025. PMID 17561174.CS1 maint: Uses authors parameter (link)
  71. Gong, H; Ni, C; Shen, X; Wu, T; Jiang, C (February 2015). "Yoga for prenatal depression: a systematic review and meta-analysis". BMC Psychiatry. 15: 14. doi:10.1186/s12888-015-0393-1. PMC 4323231. PMID 25652267.CS1 maint: Uses authors parameter (link)
  72. Tantimonaco, M; Ceci, R; Sabatini, S; Catani, MV; Rossi, A; Gasperi, V; Maccarrone, M (2014). "Physical activity and the endocannabinoid system: an overview". Cell. Mol. Life Sci. 71 (14): 2681–2698. doi:10.1007/s00018-014-1575-6. PMID 24526057.CS1 maint: Uses authors parameter (link)
  73. Dinas, PC; Koutedakis, Y; Flouris, AD (2011). "Effects of exercise and physical activity on depression". Ir J Med Sci. 180 (2): 319–325. doi:10.1007/s11845-010-0633-9. PMID 21076975.CS1 maint: Uses authors parameter (link)
  74. Szabo, A; Billett, E; Turner, J (2001). "Phenylethylamine, a possible link to the antidepressant effects of exercise?". Br J Sports Med. 35 (5): 342–343. doi:10.1136/bjsm.35.5.342. PMC 1724404. PMID 11579070.CS1 maint: Uses authors parameter (link)
  75. Lindemann, L; Hoener, MC (2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends Pharmacol. Sci. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID 15860375.CS1 maint: Uses authors parameter (link)
  76. Berry, MD (2007). "The potential of trace amines and their receptors for treating neurological and psychiatric diseases". Rev Recent Clin Trials. 2 (1): 3–19. doi:10.2174/157488707779318107. PMID 18473983.CS1 maint: Uses authors parameter (link)
  77. Yang, PY; Ho, KH; Chen, HC; Chien, MY (2012). "Exercise training improves sleep quality in middle-aged and older adults with sleep problems: A systematic review". Journal of Physiotherapy. 58 (3): 157–63. doi:10.1016/S1836-9553(12)70106-6. PMID 22884182.
  78. Buman, M.P., King, A.C. (2010). "Exercise as a Treatment to Enhance Sleep". American Journal of Lifestyle Medicine. 31 (5): 514. doi:10.1177/1559827610375532.CS1 maint: Multiple names: authors list (link)
  79. Alexander, C (1998-02-08). "Cutting weight, losing life". News & Observer. pp. A.1.
  80. Möhlenkamp, S; Lehmann, N; Breuckmann, F; Bröcker-Preuss, M; Nassenstein, K; Halle, M; Budde, T; Mann, K; Barkhausen, J; Heusch, G; Jöckel, KH; Erbel, R (200). "Running: the risk of coronary events : Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners". Eur. Heart J. 29 (15): October 1903. doi:10.1093/eurheartj/ehn163. PMID 18426850.CS1 maint: Uses authors parameter (link)
  81. Benito, B; Gay-Jordi, G; Serrano-Mollar, A; Guasch, E; Shi, Y; Tardif, JC; Brugada, J; Nattel, S; Mont, L (2011). "Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training". Circulation. 123 (1): 13–22. doi:10.1161/CIRCULATIONAHA.110.938282. PMID 21173356.CS1 maint: Uses authors parameter (link)
  82. Wilson, M; O'Hanlon, R; Prasad, S; Deighan, A; Macmillan, P; Oxborough, D; Godfrey, R; Smith, G; Maceira, A; Sharma, S; George, K; Whyte, G (2011). "Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes". J Appl Physiol. 110 (6): 1622–6. doi:10.1152/japplphysiol.01280.2010. PMC 3119133. PMID 21330616.CS1 maint: Uses authors parameter (link)
  83. O'Keefe, JH; Patil, HR; Lavie, CJ; Magalski, A; Vogel, RA; McCullough, PA (2012). "Potential Adverse Cardiovascular Effects from Excessive Endurance Exercise". Mayo Clinic Proceedings. 87 (6): 587–595. doi:10.1016/j.mayocp.2012.04.005. PMC 3538475. PMID 22677079.CS1 maint: Uses authors parameter (link)
  84. Aertsens, J; de Geus, B; Vandenbulcke, G; Degraeuwe, B; Broekx, S; De Nocker, L; Liekens, I; Mayeres, I; Meeusen, R; Thomas, I; Torfs, R; Willems, H; L, Int Panis (2010). "Commuting by bike in Belgium, the costs of minor accidents". Accident Analysis and Prevention. 42 (6): 2149–2157. doi:10.1016/j.aap.2010.07.008. PMID 20728675.CS1 maint: Uses authors parameter (link)
  85. Jacobs, L; Nawrot, TS; de Geus, B; Meeusen, R; Degraeuwe, B; Bernard, A; Sughis, M; Nemery, B; Panis, LI (October 2010). "Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution". Environmental Health. 9 (64): 64. doi:10.1186/1476-069X-9-64. PMC 2984475. PMID 20973949.CS1 maint: Uses authors parameter (link)
  86. Jimenez, C; Pacheco, E; Moreno, A; Carpenter, A (1996). "A Soldier's Neck and Shoulder Pain". The Physician and Sportsmedicine. 24 (6): 81–82. doi:10.3810/psm.1996.06.1384.CS1 maint: Uses authors parameter (link)
  87. Smith L.L. (2003). "Overtraining, excessive exercise, and altered immunity, 2003". Sports Medicine. 33 (5): 347–364. doi:10.2165/00007256-200333050-00002.
  88. Fredericson, M; Misra, AK (2007). "Epidemiology and aetiology of marathon running injuries". Sports Med. 37 (4–5): 437–439. doi:10.2165/00007256-200737040-00043.CS1 maint: Multiple names: authors list (link)
  89. Furia, John. "The Female Athlete Triad". Medscape.com.
  90. 1 2 3 4 5 6 7 8 Brook, MS; Wilkinson, DJ; Phillips, BE; Perez-Schindler, J; Philp, A; Smith, K; Atherton, PJ (January 2016). "Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise". Acta Physiologica. 216 (1): 15–41. doi:10.1111/apha.12532. PMC 4843955. PMID 26010896.CS1 maint: Uses authors parameter (link)
  91. 1 2 3 Phillips, SM (May 2014). "A brief review of critical processes in exercise-induced muscular hypertrophy". Sports Med. 44 Suppl 1: S71–S77. doi:10.1007/s40279-014-0152-3. PMC 4008813. PMID 24791918.CS1 maint: Uses authors parameter (link)
  92. Brioche, T; Pagano, AF; Py, G; Chopard, A (April 2016). "Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention". Molecular Aspects of Medicine. 50: 56–87. doi:10.1016/j.mam.2016.04.006. PMID 27106402.CS1 maint: Uses authors parameter (link)
  93. 1 2 Wilkinson, DJ; Hossain, T; Hill, DS; Phillips, BE; Crossland, H; Williams, J; Loughna, P; Churchward-Venne, TA; Breen, L; Phillips, SM; Etheridge, T; Rathmacher, JA; Smith, K; Szewczyk, NJ; Atherton, PJ (June 2013). "Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism" (PDF). J. Physiol. 591 (11): 2911–2923. doi:10.1113/jphysiol.2013.253203. PMC 3690694. PMID 23551944. สืบค้นเมื่อ 2016-05-27.CS1 maint: Uses authors parameter (link)
  94. 1 2 Wilkinson, DJ; Hossain, T; Limb, MC; Phillips, BE; Lund, J; Williams, JP; Brook, MS; Cegielski, J; Philp, A; Ashcroft, S; Rathmacher, JA; Szewczyk, NJ; Smith, K; Atherton, PJ (October 2017). "Impact of the calcium form of β-hydroxy-β-methylbutyrate upon human skeletal muscle protein metabolism". Clinical Nutrition (Edinburgh, Scotland). doi:10.1016/j.clnu.2017.09.024. PMID 29097038. Ca-HMB led a significant and rapid (<60 min) peak in plasma HMB concentrations (483.6 ± 14.2 μM, p < 0.0001). This rise in plasma HMB was accompanied by increases in MPS (PA: 0.046 ± 0.004%/h, CaHMB: 0.072 ± 0.004%/h, p < [0.001]) and suppressions in MPB (PA: 7.6 ± 1.2 μmol Phe per leg min−1, Ca-HMB: 5.2 ± 0.8 μmol Phe per leg min−1, p < 0.01). ... During the first 2.5 h period we gathered postabsorptive/fasted measurements, the volunteers then consumed 3.42 g of Ca-HMB (equivalent to 2.74 g of FA-HMB)  ... It may seem difficult for one to reconcile that acute provision of CaHMB, in the absence of exogenous nutrition (i.e. EAA's) and following an overnight fast, is still able to elicit a robust, perhaps near maximal stimulation of MPS, i.e. raising the question as to where the additional AA's substrates required for supporting this MPS response are coming from. It would appear that the AA's to support this response are derived from endogenous intracellular/plasma pools and/or protein breakdown (which will increase in fasted periods). ... To conclude, a large single oral dose (~3 g) of Ca-HMB robustly (near maximally) stimulates skeletal muscle anabolism, in the absence of additional nutrient intake; the anabolic effects of Ca-HMB are equivalent to FA-HMB, despite purported differences in bioavailability (Fig. 4).CS1 maint: Uses authors parameter (link)
  95. Phillips, SM (July 2015). "Nutritional supplements in support of resistance exercise to counter age-related sarcopenia". Adv. Nutr. 6 (4): 452–460. doi:10.3945/an.115.008367. PMC 4496741. PMID 26178029.CS1 maint: Uses authors parameter (link)
  96. "Mitochondrial biogenesis: pharmacological approaches". 2014. PMID 24606795.
  97. "Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches". 2014. PMID 24606801.
  98. Adaptation of mitochondrial ATP-production in human skeletal muscle to endurance training and detraining
  99. 1 2 Boushel, R; Lundby, C; Qvortrup, K; Sahlin, K (October 2014). "Mitochondrial plasticity with exercise training and extreme environments". Exerc. Sport Sci. Rev. 42 (4): 169–174. doi:10.1249/JES.0000000000000025. PMID 25062000.CS1 maint: Uses authors parameter (link)
  100. Valero, T (2014). "Mitochondrial biogenesis: pharmacological approaches". Curr. Pharm. Des. 20 (35): 5507–5509. doi:10.2174/138161282035140911142118. PMID 24606795.CS1 maint: Uses authors parameter (link)
  101. Lipton, JO; Sahin, M (October 2014). "The neurology of mTOR". Neuron. 84 (2): 275–291. doi:10.1016/j.neuron.2014.09.034. PMC 4223653. PMID 25374355.CS1 maint: Uses authors parameter (link)
    Figure 2: The mTOR Signaling Pathway
  102. 1 2 Wang, E; Næss, MS; Hoff, J; Albert, TL; Pham, Q; Richardson, RS; Helgerud, J (2013-11-16). "Exercise-training-induced changes in metabolic capacity with age: the role of central cardiovascular plasticity". Age (Dordrecht, Netherlands). 36 (2): 665–676. doi:10.1007/s11357-013-9596-x. PMC 4039249. PMID 24243396.
  103. Potempa, K; Lopez, M; Braun, LT; Szidon, JP; Fogg, L; Tincknell, T (January 1995). "Physiological outcomes of aerobic exercise training in hemiparetic stroke patients". Stroke: A Journal of Cerebral Circulation. 26 (1): 101–5. doi:10.1161/01.str.26.1.101. PMID 7839377.
  104. Wilmore, JH; Stanforth, PR; Gagnon, J; Leon, AS; Rao, DC; Skinner, JS; Bouchard, C (July 1996). "Endurance exercise training has a minimal effect on resting heart rate: the HERITAGE Study". Medicine & Science in Sports & Exercise. 28 (7): 829–35. doi:10.1097/00005768-199607000-00009. PMID 8832536.
  105. Carter, JB; Banister, EW; Blaber, AP (2003). "Effect of endurance exercise on autonomic control of heart rate". Sports Medicine. 33 (1): 33–46. doi:10.2165/00007256-200333010-00003. PMID 12477376.
  106. Chen, Chao‐Yin; Dicarlo, Stephen E. (January 1998). "Endurance exercise training‐induced resting Bradycardia: A brief review". Sports Medicine, Training and Rehabilitation. 8 (1): 37–77. doi:10.1080/15438629709512518.
  107. ,Crewther, BT; Heke, TL; Keogh, JW (February 2013). "The effects of a resistance-training program on strength, body composition and baseline hormones in male athletes training concurrently for rugby union 7's". The Journal of sports medicine and physical fitness. 53 (1): 34–41. PMID 23470909.
  108. Schoenfeld, BJ (June 2013). "Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design". Journal of strength and conditioning research / National Strength & Conditioning Association. 27 (6): 1720–30. doi:10.1519/JSC.0b013e31828ddd53. PMID 23442269.
  109. Dalgas, U; Stenager, E; Lund, C; Rasmussen, C; Petersen, T; Sørensen, H; Ingemann-Hansen, T; Overgaard, K (July 2013). "Neural drive increases following resistance training in patients with multiple sclerosis". Journal of Neurology. 260 (7): 1822–32. doi:10.1007/s00415-013-6884-4. PMID 23483214.
  110. Staron, RS; Karapondo, DL; Kraemer, WJ; Fry, AC; Gordon, SE; Falkel, JE; Hagerman, FC; Hikida, RS (March 1994). "Skeletal muscle adaptations during early phase of heavy-resistance training in men and women". Journal of Applied Physiology. 76 (3): 1247–55. PMID 8005869.
  111. Folland, JP; Williams, AG (2007). "The adaptations to strength training : morphological and neurological contributions to increased strength". Sports Medicine. 37 (2): 145–68. doi:10.2165/00007256-200737020-00004. PMID 17241104.
  112. Moritani, T; deVries, HA (June 1979). "Neural factors versus hypertrophy in the time course of muscle strength gain". American journal of physical medicine. 58 (3): 115–30. PMID 453338.
  113. Narici, MV; Roi, GS; Landoni, L; Minetti, AE; Cerretelli, P (1989). "Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps". European journal of applied physiology and occupational physiology. 59 (4): 310–9. doi:10.1007/bf02388334. PMID 2583179.
  114. Pedersen, BK (July 2013). "Muscle as a secretory organ". Comprehensive Physiology. 3 (3): 1337–62. doi:10.1002/cphy.c120033. ISBN 9780470650714. PMID 23897689.
  115. /Cohen, S; Williamson, GM; Williamson (1991). "Stress and infectious disease in humans". Psychological Bulletin. 109 (1): 5–24. doi:10.1037/0033-2909.109.1.5. PMID 2006229.CS1 maint: Multiple names: authors list (link)
  116. Borer, KT; Wuorinen, EC; Lukos, JR; Denver, JW; Porges, SW; Burant, CF; Wuorinen; Lukos; Denver; Porges; Burant (August 2009). "Two bouts of exercise before meals but not after meals, lower fasting blood glucose". Medicine and Science in Sports and Exercise. 41 (8): 1606–14. doi:10.1249/MSS.0b013e31819dfe14. PMID 19568199.CS1 maint: Multiple names: authors list (link)
  117. Wisløff, U; Ø, Ellingsen; Kemi, OJ; Ellingsen; Kemi (July 2009). "High=Intensity Interval Training to Maximize Cardiac Benefit of Exercise Taining?". Exercise and Sports Sciences Reviews. 37 (3): 139–146. doi:10.1097/JES.0b013e3181aa65fc. PMID 19550205.CS1 maint: Multiple names: authors list (link)
  118. "Neurotrophic factors". Nature Publishing Group. สืบค้นเมื่อ 2016-05-31. Neurotrophic factors are molecules that enhance the growth and survival potential of neurons. They play important roles in both development, where they can act as guidance cues for developing neurons, and in the mature nervous system, where they are involved in neuronal survival, synaptic plasticity and the formation of long-lasting memories.
  119. Malenka, RC; Nestler, EJ; Hyman, SE (2009). "Chapter 8: Atypical Neurotransmitters". In RY, Sydor A Brown. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 199, 215. ISBN 9780071481274. Neurotrophic factors are polypeptides or small proteins that support the growth, differentiation, and survival of neurons. They produce their effects by activation of tyrosine kinases.CS1 maint: Uses authors parameter (link) CS1 maint: Uses editors parameter (link)
  120. Zigmond, MJ; Cameron, JL; Hoffer, BJ; Smeyne, RJ (2012). "Neurorestoration by physical exercise: moving forward". Parkinsonism Relat. Disord. 18 Suppl 1: 5147–50. doi:10.1016/51353-8020(11)70046-3. PMID 22166417. As will be discussed below, exercise stimulates the expression of several neurotrophic factors (NTF5).CS1 maint: Uses authors parameter (link)
  121. Bouchard, J; Villeda, SA (2015). "Aging and brain rejuvenation as systemic events". J. Neurochem. 132 (1): 5–19. doi:10.1111/jnc.12969. PMC 4301186. PMID 25327899. From a molecular perspective, elevated systemic levels of circulating growth factors such as vascular endothelial growth factor and insulin-like growth factor 1 (IGF-1) in blood elicited by increased exercise have been shown to mediate, in part, enhancements in neurogenesis (Trejo et al. 2001; Fabel et al. 2003).CS1 maint: Uses authors parameter (link)
  122. Silverman, MN; Deuster, PA (October 2014). "Biological mechanisms underlying the role of physical fitness in health and resilience". Interface Focus. 4 (5): 20140040. doi:10.1098/rsfs.2014.0040. PMC 4142018. PMID 25285199. Importantly, physical exercise can improve growth factor signalling directly or indirectly by reducing pro-inflammatory signalling [33]. Exercise-induced increases in brain monoamines (norepinephrine and serotonin) may also contribute to increased expression of hippocampal BDNF [194]. In addition, other growth factors—insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor—have been shown to play an important role in BDNF-induced effects on neuroplasticity [33,172,190,192], as well as exerting neuroprotective effects of their own [33,214,215], thereby contributing to the beneficial effects of exercise on brain health.CS1 maint: Uses authors parameter (link)
  123. Gomez-Pinilla, F; Hillman, C (January 2013). "The influence of exercise on cognitive abilities". Compr. Physiol. 3 (1): 403–428. doi:10.1002/cphy.c110063. ISBN 9780470650714. PMC 3951958. PMID 23720292. Abundant research in the last decade has shown that exercise is one of the strongest promoters of neurogenesis in the brain of adult rodents (97, 102) and humans (1,61), and this has introduced the possibility that proliferating neurons could contribute to the cognitive enhancement observed with exercise. In addition to BDNF, the actions of IGF-1 and vascular endothelial growth factor (VEGF) (54) are considered essential for the angiogenic and neurogenic effects of exercise in the brain. Although the action of exercise on brain angiogenesis has been known for many years (10), it is not until recently that neurovascular adaptations in the hippocampus have been associated with cognitive function (29). Exercise enhances the proliferation of brain endothelial cells throughout the brain (113), hippocampal IGF gene expression (47), and serum levels of both IGF (178) and VEGF (63). IGF-1 and VEGF, apparently produced in the periphery, support exercise induced neurogenesis and angiogenesis, as corroborated by blocking the effects of exercise using antibodies against IGF-1 (47) or VEGF (63).CS1 maint: Uses authors parameter (link)
  124. Tarumi, T; Zhang, R (January 2014). "Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise". Front Physiol. 5: 6. doi:10.3389/fphys.2014.00006. PMC 3896879. PMID 24478719. Exercise-related improvements in brain function and structure may be conferred by the concurrent adaptations in vascular function and structure. Aerobic exercise increases the peripheral levels of growth factors (e.g., BDNF, IFG-1, and VEGF) which cross the blood-brain barrier (BBB) and stimulate neurogenesis and angiogenesis (Trejo et al., 2001; Lee et al., 2002; Fabel et al., 2003; Lopez-Lopez et al., 2004). Consistent with this, exercise-related enlargement of hippocampus was accompanied by increases in cerebral blood volume and capillary densities (Pereira et al., 2007). Enhanced cerebral perfusion may not only facilitate the delivery of energy substrates, but also lower the risk of vascular-related brain damages, including WMH and silent infarct (Tseng et al., 2013). Furthermore, regular aerobic exercise is associated with lower levels of Aβ deposition in individuals with APOE4 positive (Head et al., 2012), which may also reduce the risk of cerebral amyloid angiopathy and microbleeds (Poels et al., 2010).CS1 maint: Uses authors parameter (link)
  125. 1 2 Baker, Philip R. A.; Francis, Daniel P.; Soares, Jesus; Weightman, Alison L.; Foster, Charles (2015-01-01). "Community wide interventions for increasing physical activity". The Cochrane Database of Systematic Reviews. 1: CD008366. doi:10.1002/14651858.CD008366.pub3. PMID 25556970.
  126. Howe, Tracey E; Rochester, Lynn; Neil, Fiona; Skelton, Dawn A; Ballinger, Claire (2011-11-09). Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd. doi:10.1002/14651858.cd004963.pub3.
  127. Liu, Chiung-ju; Latham, Nancy K (2009-07-08). Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd. doi:10.1002/14651858.cd002759.pub2/abstract.
  128. Gc, V; Wilson, EC; Suhrcke, M; Hardeman, W; Sutton, S; VBI Programme, Team (April 2016). "Are brief interventions to increase physical activity cost-effective? A systematic review". British Journal of Sports Medicine. 50 (7): 408–17. doi:10.1136/bjsports-2015-094655. PMC 4819643. PMID 26438429.
  129. Kahn, EB; Ramsey, LT; Brownson, RC; Heath, GW; Howze, EH; Powell, KE; Stone, EJ; Rajab, MW; Corso, P (May 2002). "The effectiveness of interventions to increase physical activity. A systematic review". Am J Prev Med. 22 (4 Suppl): 73–107. doi:10.1016/S0749-3797(02)00434-8. PMID 11985936.CS1 maint: Uses authors parameter (link)
  130. Durán, Víctor Hugo. "Stopping the rising tide of chronic diseases Everyone's Epidemic". Pan American Health Organization. paho.org. สืบค้นเมื่อ 2009-01-10.
  131. Dons, E (2018). "Transport mode choice and body mass index: Cross-sectional and longitudinal evidence from a European-wide study". Environment International (119): 109–116. doi:10.1016/j.envint.2018.06.023. PMID 29957352.
  132. Baker, Philip RA; Dobbins, Maureen; Soares, Jesus; Francis, Daniel P; Weightman, Alison L; Costello, Joseph T (2015-01-06). Public health interventions for increasing physical activity in children, adolescents and adults: an overview of systematic reviews. John Wiley & Sons, Ltd. doi:10.1002/14651858.cd011454.
  133. Reed, Jennifer L; Prince, Stephanie A; Cole, Christie A; Fodor, J; Hiremath, Swapnil; Mullen, Kerri-Anne; Tulloch, Heather E; Wright, Erica; Reid, Robert D (2014-12-19). "Workplace physical activity interventions and moderate-to-vigorous intensity physical activity levels among working-age women: a systematic review protocol". Systematic Reviews. 3 (1): 147. doi:10.1186/2046-4053-3-147. PMC 4290810. PMID 25526769.
  134. Laeremans, M (2018). "Black Carbon Reduces the Beneficial Effect of Physical Activity on Lung Function". Medicine & Science in Sports & Exercise: 1. doi:10.1249/MSS.0000000000001632.
  135. Xu, Huilan; Wen, Li Ming; Rissel, Chris (2015-03-19). "Associations of Parental Influences with Physical Activity and Screen Time among Young Children: A Systematic Review". Journal of Obesity. 2015: 1–23. doi:10.1155/2015/546925. PMC 4383435. PMID 25874123.
  136. "Youth Physical Activity Guidelines". Centers for Disease Control and Prevention.
  137. "Health and Participation". Eurpean Commission. Archived from the original on 2018-12-09. สืบค้นเมื่อ 2018-12-18.
  138. 1 2 "WHO: Obesity and overweight". World Health Organization. Archived from the original on 2008-12-18. สืบค้นเมื่อ 2009-01-10.
  139. Kennedy, AB; Resnick, PB (May 2015). "Mindfulness and Physical Activity". American Journal of Lifestyle Medicine. 9 (3): 3221–223. doi:10.1177/1559827614564546.CS1 maint: Uses authors parameter (link)
  140. Hernandez, Javier (2008-06-24). "Car-Free Streets, a Colombian Export, Inspire Debate". NY Times. NY Times.
  141. Sullivan, Nicky. "Gyms". Travel Fish. Travel Fish. สืบค้นเมื่อ 2016-12-08.
  142. Tatlow, Anita. "When in Sweden...making the most of the great outdoors!". Stockholm on a Shoestring. Stockholm on a Shoestring. สืบค้นเมื่อ 2016-12-05.
  143. Langfitt, Frank. "Beijing's Other Games: Dancing In The Park". National Public Radio. National Public Radio. สืบค้นเมื่อ 2016-12-05.
  144. Kimber N.; Heigenhauser G.; Spriet L.; Dyck D. (2003). "Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans". American Journal of Lifestyle Medicine. 548 (3): 919–927. doi:10.1113/jphysiol.2002.031179. PMC 2342904.
  145. Reilly, T; Ekblom, B (June 2005). "The use of recovery methods post-exercise". J. Sports Sci. 23 (6): 619–627. doi:10.1080/02640410400021302. PMID 16195010.CS1 maint: Uses authors parameter (link)
  146. "Quotes About Exercise Top 10 List". It is exercise alone that supports the spirits, and keeps the mind in vigor
  147. "History of Fitness". www.unm.edu. สืบค้นเมื่อ 2017-09-20.
  148. "physical culture". Encyclopedia Britannica. สืบค้นเมื่อ 2017-09-20.
  149. "The Fitness League History". The Fitness League. Archived from the original on 2009-07-29. สืบค้นเมื่อ 2015-04-08.
  150. Kuper, Simon (2009-09-11). "The man who invented exercise". Financial Times. สืบค้นเมื่อ 2009-09-12.
  151. 1 2 Morris, JN; Heady, JA; Raffle, PA; Roberts, CG; Parks, JW (1953). "Coronary heart-disease and physical activity of work". Lancet. 265 (6795): 1053–7. doi:10.1016/S0140-6736(53)90665-5. PMID 13110049.CS1 maint: Uses authors parameter (link)
  152. Zhu, S.; Eclarinal, J.; Baker, M. S.; Li, G.; Waterland, R. A. (2016). "Developmental programming of energy balance regulation: is physical activity more "programmable" than food intake?". Proceedings of the Nutrition Society. 75 (1): 73–77. doi:10.1017/s0029665115004127. PMID 26511431.
  153. Acosta, W.; Meek, T. H.; Schutz, H.; Dlugosz, E. M.; Vu, K. T.; Garland Jr, T. (2015). "Effects of early-onset voluntary exercise on adult physical activity and associated phenotypes in mice". Physiology & Behavior. 149: 279–286. doi:10.1016/j.physbeh.2015.06.020. PMID 26079567.
  154. Swallow, John G; Carter, Patrick A; Garland, Jr, Theodore (1998). "Artificial selection for increased wheel-running behavior in house mice". Behavior Genetics. 28 (3): 227–37. doi:10.1023/A:1021479331779. PMID 9670598.
  155. Swallow, John G; Garland, Theodore; Carter, Patrick A; Zhan, Wen-Zhi; Sieck, Gary C (1998). "Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus)". Journal of Applied Physiology. 84 (1): 69–76. doi:10.1152/jappl.1998.84.1.69. PMID 9451619.
  156. Rhodes, J. S; Van Praag, H; Jeffrey, S; Girard, I; Mitchell, G. S; Garland Jr, T; Gage, F. H (2003). "Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running". Behavioral Neuroscience. 117 (5): 1006–16. doi:10.1037/0735-7044.117.5.1006. PMID 14570550.
  157. Garland Jr, Theodore; Morgan, Martin T; Swallow, John G; Rhodes, Justin S; Girard, Isabelle; Belter, Jason G; Carter, Patrick A (2002). "Evolution of a Small-Muscle Polymorphism in Lines of House Mice Selected for High Activity Levels". Evolution. 56 (6): 1267. doi:10.1554/0014-3820(2002)056[1267:EOASMP]2.0.CO;2. PMID 12144025.
  158. Gallaugher, P. E; Thorarensen, H; Kiessling, A; Farrell, A. P (2001). "Effects of high intensity exercise training on cardiovascular function, oxygen uptake, internal oxygen transport and osmotic balance in chinook salmon (Oncorhynchus tshawytscha) during critical speed swimming". The Journal of Experimental Biology. 204 (Pt 16): 2861–72. PMID 11683441.
  159. Palstra, A. P; Mes, D; Kusters, K; Roques, J. A; Flik, G; Kloet, K; Blonk, R. J (2015). "Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi)". Frontiers in Physiology. 5: 506. doi:10.3389/fphys.2014.00506. PMC 4287099. PMID 25620933.
  160. Magnoni, L. J; Crespo, D; Ibarz, A; Blasco, J; Fernández-Borràs, J; Planas, J. V (2013). "Effects of sustained swimming on the red and white muscle transcriptome of rainbow trout (Oncorhynchus mykiss) fed a carbohydrate-rich diet". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 166 (3): 510–21. doi:10.1016/j.cbpa.2013.08.005. PMID 23968867.
  161. 1 2 Owerkowicz, T; Baudinette, RV (2008). "Exercise training enhances aerobic capacity in juvenile estuarine crocodiles (Crocodylus porosus)". Comparative Biochemistry and Physiology A. 150 (2): 211–6. doi:10.1016/j.cbpa.2008.04.594. PMID 18504156.CS1 maint: Uses authors parameter (link)
  162. Eme, J; Owerkowicz, T; Gwalthney, J; Blank, J. M; Rourke, B. C; Hicks, J. W (2009). "Exhaustive exercise training enhances aerobic capacity in American alligator (Alligator mississippiensis)". Journal of Comparative Physiology B. 179 (8): 921–931. doi:10.1007/s00360-009-0374-0. PMC 2768110.
  163. Butler, P. J; Turner, D. L (1988). "Effect of training on maximal oxygen uptake and aerobic capacity of locomotory muscles in tufted ducks, Aythya fuligula". The Journal of Physiology. 401: 347–359. PMC 1191853.
  164. 1 2 Garland, T; Else, PL; Hulbert, AJ; Tap, P (1987). "Effects of endurance training and captivity on activity metabolism of lizards". Am. J. Physiol. 252 (3 Pt 2): R450–6. doi:10.1152/ajpregu.1987.252.3.R450. PMID 3826409.CS1 maint: Multiple names: authors list (link)
  165. 1 2 Husak, J. F; Keith, A. R; Wittry, B. N (2015). "Making Olympic lizards: The effects of specialised exercise training on performance". Journal of Experimental Biology. 218 (6): 899. doi:10.1242/jeb.114975.

ใกล้เคียง

การออกกำลังกาย การออกกำลังกายใช้ออกซิเจน การออกเสียงประชามติร่างรัฐธรรมนูญไทย พ.ศ. 2559 การออกแบบแฟชั่น การออกเสียงคำว่า GIF การออกแบบอย่างสากล การออกเสียงประชามติร่างรัฐธรรมนูญไทย พ.ศ. 2550 การออกแบบอย่างชาญฉลาด การออกแบบกราฟิก การออกเสียงตัวอักษรของการสื่อสารวิทยุ

แหล่งที่มา

WikiPedia: การออกกำลังกาย http://www.clinicalnutritionjournal.com/article/S0... http://library.crossfit.com/free/pdf/CFJ-trial.pdf http://www.ft.com/cms/s/2/e6ff90ea-9da2-11de-9f4a-... http://www.inspirational-quotes-and-quotations.com... http://www.medicineonline.com/news/12/10297/Being-... http://www.medscape.com/viewarticle/717390_5 http://www.nature.com/subjects/neurotrophic-factor... http://www.slate.com/articles/life/fitness/2011/01... http://link.springer.com/article/10.1007%2Fs00702-... http://www.stockholmonashoestring.com/when-in-swed...