การประยุกต์ทางฟิสิกส์ดาราศาสตร์ ของ บทนำทฤษฎีสัมพัทธภาพทั่วไป

แบบจำลองที่ยึดสัมพัทธภาพทั่วไปมีบทบาทสำคัญในวิชาฟิสิกส์ดาราศาสตร์ ความสำเร็จของแบบจำลองเหล่านี้ยิ่งเป็นหลักฐานความถูกต้องของทฤษฎี

เลนส์ความโน้มถ่วง

"กางเขนไอน์สไตน์": ภาพควาซาร์อันห่างไกลเดียวกันสี่ภาพซึ่งผลิตด้วยเลนส์ความโน้มถ่วง (พื้นหน้าที่อยู่ใกล้กว่ามากคือ ฮัคระส์เลนส์)

ด้วยแสงมีการเบนในสนามความโน้มถ่วง จึงเป็นไปได้ที่แสงของวัตถุที่ห่างไกลมาถึงผู้สังเกตในวิถีตั้งแต่สองวิถีขึ้นไป ตัวอ่ยางเช่น แสงของวัตถุที่อยู่ห่างไกลมากอย่างควาซาร์สามารถผ่านตาด้านหนึ่งของดาราจักรขนาดมหึมาและมีการเลี้ยวเบนเล็กน้อยเพื่อมาถึงผู้สังเกตบนโลก ขณะที่แสงผ่านด้านตรงข้ามของดาราจักรเดียวกันนั้นก็มีการเลี้ยวเบนเช่นกนั จึงมาถึงผู้สังเกตเดียวกันจากทิศทางต่างไปเล็กน้อย ผลคือ ผู้สังเกตคนนั้นจะเห็นวัตถุดาราศาสตร์หนึ่งในจุดสองจุดบนท้องฟ้า โฟกัสชนิดนี้ทราบกันดีว่าพบในเลนส์ตา ฉะนั้นผลจากความโน้มถ่วงนี้จึงเรียก เลนส์ความโน้มถ่วง[33]

ดาราศาสตร์เชิงสังเกตการณ์ใช้ผลของเลนส์เป็นเครื่องมือสำคัญในการอนุมานคุณสมบัติของวัตถุเลนส์ แม้ในกรณีที่วัตถุนั้นไม่สามารถเห็นได้โดยตรง รูปทรงของภาพจากเลนส์ให้สารสนเทศเกี่ยวกับการกระจายมวลที่เป็นสาเหตุของการเบนแสง โดยเฉพาะอย่างยิ่ง เลนส์ความโน้มถ่วงเป็นทางหนึ่งในการวัดการกระจายของสสารมืด ซึ่งไม่มีแสงแต่สามารถสังเกตได้เฉพาะจากผลความโน้มถ่วงของมัน การประยุกต์ที่น่าสนใจเป็นพิเศษได้แก่การสังเกตขนาดใหญ่ ที่ที่มวลจากเลนส์แผ่ออกเป็นบริเวณกว้างสำคัญในเอกภพที่สังเกตได้ และสามารถใช้ให้ได้มาซึ่งสารสนเทศเกี่ยวกับคุณสมบัติขนาดใหญ่และวิวัฒนาการของจักรวาลนี้[34]

คลื่นความโน้มถ่วง

คลื่นความโน้มถ่วง (gravitational wave) ซึ่งเป็นผลสืบเนื่องโดยตรงอย่างหนึ่งของทฤษฎีของไอน์สไตน์ เป็นการบิดเบี้ยวของเรขาคณิตที่ส่งผ่านด้วยความเร็วแสง และสามารถคิดเสมือนเป็นริ้วคลื่นในปริภูมิ-เวลาได้ ทั้งนี้ ไม่ควรสับสนกับคลื่นโน้มถ่วง (gravity wave) ของพลศาสตร์ของไหล ซึ่งเป็นมโนทัศน์อีกเรื่องหนึ่ง

ในเดือนกุมภาพันธ์ 2016 ทีมแอดแวนซ์ไลโกประกาศว่าสังเกตคลื่นคนวามโน้มถ่วงโดยตรงจากการรวมหลุมดำได้[35]

สำหรับการสังเกตโดยอ้อม ผลของคลื่นความโน้มถ่วงพบได้ในการสังเกตระบบดาวฤกษ์คู่บางระบบ ดาวฤกษ์คู่ดังกล่าวโคจรรอบกัน และขณะที่โคจรรอบกันนั้นก็ค่อย ๆ เสียพลังงานโดยแผ่คลื่นความโน้มถ่วงออกมา สำหรับดาวฤกษ์ธรรมดาอย่างดวงอาทิตย์ การเสียพลังงานนี้จะเล็กน้อยเกินไปจนตรวจไม่พบ แต่การเสียพลังงานนี้สังเกตได้ในปี 1974 ในพัลซาร์คู่ชื่อ PSR1913+16 ในระบบดังกล่าว ดาวฤกษ์ที่โคจรรอบกันดวงหนึ่งเป็นพัลซาร์ จึงมีผลลัพธ์สองประการ คือ หนึ่ง พัลซาร์เป็นวัตถุหนาแน่นยิ่งยวดที่เรียก ดาวนิวตรอน ที่การปล่อยคลื่นความโน้มถ่วงมีความเข้มกว่าดาวฤกษ์ธรรมดา และสอง พัลซาร์แผ่ลำรังสีแม่เหล็กไฟฟ้าแคบ ๆ จากขั้วแม่เหล็กของมัน เมื่อพัลซาร์หมุน ลำรังสีจะกวาดผ่านโลก ซึ่งจะเห็นลำดังกล่าวเป็นชุดพัลส์วิทยุสม่ำเสมอดุจเรือในทะเลเห็นแสงกะพริบสม่ำเสมอจากแสงที่หมุนในประภาคาร รูปแบบพัลส์วิทยุที่สม่ำเสมอนี้ทำหน้าที่เสมือนเป็น "นาฬิกา" ที่แม่นยำสูง สามารถใช้กะเวลาคาบการโคจรของดาวฤกษ์คู่ได้ และมีการตอบสนองอย่างไวต่อการบิดเบี้ยวของปริภูมิ-เวลาในละแวกติดกับมัน

ผู้ค้นพบ PSR1913+16 รัสเซล ฮัลส์และโจเซฟ เทย์เลอร์ได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี 1993 นับแต่นั้น มีการค้นพบพัลซาร์คู่อื่นอีกหลายระบบ การค้นพบที่มีประโยชน์สูงสุดได้แก่ระบบที่ดาวทั้งสองดวงเป็นพัลซาร์ เพราะจะให้การทดสอบที่แม่นยำของสัมพัทธภาพทั่วไป[36]

ปัจจุบันมีเครื่องตรวจจับคลื่นความโน้มถ่วงบนพื้นดินจำนวนหนึ่งดำเนินการอยู่ และภารกิจปล่อยเครื่องตรวจจับบนอวกาศ ไลซา (LISA) กำลังอยู่ระหว่างการพัฒนา โดยมีภารกิจก่อนหน้า (ไลซาพาธไฟน์เดอร์) ซึ่งมีการปล่อยในปี 2015 การสังเกตคลื่นความโน้มถ่วงสามารถใช้เพื่อให้ได้สารสนเทศเกี่ยวกับวัตถุเนื้อแน่นอย่างดาวนิวตรอนและหลุมดำได้ และยังใช้เพื่อสอบหาสภาพของเอกภพช่วงแรกเศษเสี้ยววินาทีหลังบิกแบง[37]

หลุมดำ

เจ็ตที่ได้พลังงานจากหลุมดำที่มาจากบริเวณใจกลางของดาราจักรเมซีเย 87

สัมพัทธภาพทั่วไปพยากรณ์ว่าเมื่อมวลกระจุกอยู่ในบริเวณปริภูมิที่มีเนื้อแน่นเพียงพอจะเกิดหลุมดำ หลุมดำเป็นบริเวณของปริภูมิที่ผลความโน้มถ่วงเข้มเสียจนแสงก็หนีออกมาไม่ได้ คิดกันว่าหลุมดำบางชนิดเป็นขั้นสุดท้ายในวิวัฒนาการของดาวฤกษ์ขนาดมหึมา อีกด้านหนึ่ง มีการสันนิษฐานว่าหลุมดำมวลยวดยิ่งที่มีมวลหลายล้านถึงหลายพันล้านเท่าของดวงอาทิตย์อยู่ในใจกลางของดาราจักรส่วนใหญ่ และมีบทบาทสำคัญในแบบจำลองปัจจุบันวิธีการก่อกำเนิดดาราจักรในช่วงหลายพันล้านปีที่ผ่านมา[38]

สสารที่ตกลงสู่วัตถุเนื้อแน่นเป็นกลไกที่มีประสิทธิภาพที่สุดกลไกหนึ่งสำหรับการปลดปล่อยพลังงานในรูปการแผ่รังสี และสสารที่ตกลงสู่หลุมดำเชื่อว่าเป็นตัวการให้เกิดปรากฏการณ์ทางดาราศาสตร์ที่สว่างที่สุดปรากฏการณ์หนึ่งเท่าที่จินตนาการได้ ตัวอย่างสิ่งที่น่าสนใจอย่างยิ่งโดดเด่นสำหรับนักดาราศาสตร์ได้แก่ควาซาร์และนิวเคลียสดาราจักรกัมมันต์ชนิดอื่น ภายใต้ภาวะที่ถูกต้อง สสารที่ตกลงสะสมอยู่รอบหลุมดำสามารถนำไปสู่การก่อกำเนิดเจ็ต (jet) ซึ่งเป็นลำสสารรวมปลิวออกสู่อวกาศด้วยความเร็วเกือบเท่าความเร็วแสง[39]

มีคุณสมบัติหลายประการที่ทำให้หลุมดำเป็นบ่อเกิดของคลื่นความโน้มถ่วงที่มีโอกาสเป็นไปได้มากที่สุด เหตุผลหนึ่งคือหลุมดำเป็นวัตถุเนื้อแน่นที่สุดที่สามารถโคจรรอบกันและกันเป็นส่วนหนึ่งของระบบดาวคู่ได้ ผลคือ คลื่นความโน้มถ่วงที่ปลดปล่อยออกมาจากระบบดังกล่าวจะเข้มเป็นพิเศษ อีกเหตุผลหนึ่งสืบเนื่องจากสิ่งที่เรียกว่าทฤษฎีบทความเป็นได้อย่างเดียวของหลุมดำ คือเมื่อเวลาผ่านไปหลุมดำจะยังมีเฉพาะคุณลักษณะแตกต่างน้อยที่สุด (ทฤษฎีบทเหล่านี้ได้ชื่อว่า ทฤษฎี "ไร้ขน") โดยไม่ขึ้นอยู่กับรูปทรงเรขาคณิตตั้งต้น ตัวอย่างเช่น ในระยะยาว การยุบตัวของลูกบาศก์สสารในทางทฤษฎีจะไม่ส่งผลให้เกิดหลุมดำทรงลูกบาศก์ แต่หลุมดำที่เกิดขึ้นจากไม่แตกต่างกับหลุมดำที่เกิดจากการยุบตัวของมวลทรงกลม ในการเปลี่ยนผ่านรูปทรงกลม หลุมดำที่เกิดจากการยุบตัวของรูปทรงที่ซับซ้อนมากขึ้นจะปลดปล่อยคลื่นความโน้มถ่วง[40]

จักรวาลวิทยา

ลักษณะสำคัญที่สุดอย่างหนึ่งของสัมพัทธภาพทั่วไปคือสามารถใช้ได้กับเอกภพทั้งหมด จุดสำคัญคือในมาตราส่วนใหญ่ เอกภพนี้ดูเหมือนสร้างอยู่บนเส้นตรงเรียบง่ายมาก ๆ คือ ทุกการสังเกตในปัจจุบันเสนอว่าโดยเฉลี่ยโครงสร้างของจักรวาลควรคงเดิมโดยประมาณ โดยไม่ขึ้นอยู่กับสถานที่ของผู้สังเกตหรือทิศทางของการสังเกต เอกภพเป็นเนื้อเดียวกันและไอโซทรอปี (ภาวะเอกรูป) โดยประมาณ เอกภพที่ง่ายโดยเปรียบเทียบนี้สามารถอธิบายได้ด้วยผลเฉลยง่ายของสมการของไอน์สไตน์ แบบจำลองจักรวาลวิทยาของเอกภพปัจจุบันได้มาจากการรวมผลเฉลยง่าย ๆ เหล่านี้กับสัมพัทธภาพทั่วไปโดยทฤษฎีที่อธิบายคุณสมบัติของปริมาณสสารของเอกภพ ได้แก่ อุณหพลศาสตร์ ฟิสิกส์นิวเคลียร์และฟิสิกส์อนุภาค ตามแบบจำลองเหล่านี้ เอกภพปัจจุบันแห่งนี้ถือกำเนิดจากภาวะอุณหภูมิสูงและหนาแน่นยิ่งยวด ที่เรียก บิกแบง ทีเมื่อประมาณ 14,000 ล้านปีก่อนและมีการขยายตัวนับแต่นั้น[41]

สมการของไอน์สไตน์สามารถวางนัยทั่วไปได้โดยการเพิ่มพจน์ที่เรียก ค่าคงที่จักรวาลวิทยา เมื่อมีพจน์นี้อยู่ ปริภูมิว่างเองจะประพฤติตนเป็นแหล่งความโน้มถ่วงดึงดูด (หรือที่พบน้อยกว่า ผลัก) ไอน์สไตน์นำเสนอพจน์นี้ครั้งแรกในเอกสารบุกเบิกปี 1917 ว่าด้วยจักรวาลวิทยา โดยมีแรงจูงใจจำเพาะมาก คือ ความคิดจักรวาลวิทยาร่วมสมัยถือว่าเอกภาพเป็นสถิต และต้องอาศัยอีกพจน์หนึ่งเพื่อสร้างเอกภพแบบจำลองสถิติภายในกรอบของสัมพัทธภาพทั่วไป เมื่อชัดเจนว่าเอกภพไม่ใช่สถิต แต่กำลังขยายตัว ไอน์สไตน์จึงรีบทิ้งพจน์ใหม่นี้ นับแต่สิ้นสุดคริสต์ทศวรรษ 1990 อย่างไรก็ตาม หลักฐานดาราศาสตร์บ่งชี้ว่าการขยายตัวที่มีความเร่งนี้ต้องกันกับค่าคงที่จักรวาลวิทยา หรือเทียบเท่ากับพลังงานมืดชนิดที่จำเพาะและพบทั่วไป กำลังสะสมอย่างคงที่[42]

แหล่งที่มา

WikiPedia: บทนำทฤษฎีสัมพัทธภาพทั่วไป http://www.iam.ubc.ca/old_pages/newbury/lenses/res... http://www.upscale.utoronto.ca/GeneralInterest/Har... http://www.europhysicsnews.com/full/42/article4.pd... http://physicsworld.com/cws/article/print/2004/may... http://www.sciamdigital.com/index.cfm?fa=Products.... http://adsabs.harvard.edu/abs/1997GReGr..29..519E http://adsabs.harvard.edu/abs/1998SciAm.278f..52D http://adsabs.harvard.edu/abs/1999GReGr..31..919M http://adsabs.harvard.edu/abs/2002PhT....55e..41A http://adsabs.harvard.edu/abs/2002SciAm.287b..42M