นิยาม ของ ฟังก์ชันแกมมา

นิยามหลัก

ส่วนขยายของฟังก์ชันแกมมาบนระนาบจำนวนเชิงซ้อน

สัญกรณ์ Γ (z) กำหนดขึ้นโดยอาเดรียง-มารี เลอช็องดร์ (Adrien-Marie Legendre) ซึ่งใช้อักษรกรีก แกมมา ตัวใหญ่ (Γ) แทนชื่อฟังก์ชัน โดยนิยามไว้ว่า ถ้าส่วนจริงของจำนวนเชิงซ้อน z เป็นค่าบวก (ℜ{z} > 0) ดังนั้นปริพันธ์นี้

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t {\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}\,\mathrm {d} t\,\!}

จะลู่เข้าสัมบูรณ์ โดยการหาปริพันธ์ทีละส่วนจะสามารถแสดงได้ว่า

Γ ( z + 1 ) = z Γ ( z ) ( 1 ) {\displaystyle \Gamma (z+1)=z\,\Gamma (z)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\,\!}

สมการเชิงฟังก์ชันนี้เป็นข้อสรุปทั่วไปสำหรับความสัมพันธ์ n! = n (n − 1) ! ของฟังก์ชันแฟกทอเรียล เราสามารถวิเคราะห์การประเมินค่าของ Γ (1) ได้ว่า

Γ ( 1 ) = ∫ 0 ∞ e − t d t = lim k → ∞ − e − t | 0 k = − 0 − ( − 1 ) = 1 {\displaystyle \Gamma (1)=\int _{0}^{\infty }e^{-t}dt=\lim _{k\rightarrow \infty }-e^{-t}|_{0}^{k}=-0-(-1)=1}

โดยการรวมความสัมพันธ์ข้างต้นสองประการ แสดงให้เห็นว่าฟังก์ชันแฟกทอเรียลเป็นกรณีพิเศษอันหนึ่งของฟังก์ชันแกมมา ดังนี้

Γ ( n + 1 ) = n Γ ( n ) = ⋯ = n ! Γ ( 1 ) = n ! {\displaystyle \Gamma (n+1)=n\,\Gamma (n)=\cdots =n!\,\Gamma (1)=n!\,}

สำหรับทุกค่า n ที่เป็นจำนวนธรรมชาติ ตัวอย่างเช่น Γ (5) = 4! เป็นต้น

ค่าสัมบูรณ์ของฟังก์ชันแกมมาบนระนาบจำนวนเชิงซ้อน

ความสัมพันธ์ดังกล่าวสามารถจัดเป็นฟังก์ชันมีโรมอร์ฟิก (meromorphic function) บนค่า x โดยมี "โพล" อยู่บน x = −n (เมื่อ n = 0, 1, 2, 3, ...) และมี "ส่วนตกค้าง" อยู่ที่ ( − 1 ) n n ! {\displaystyle \textstyle {\frac {(-1)^{n}}{n!}}} [1] ดังนั้นเราจะสามารถขยาย Γ (z) ไปเป็นฟังก์ชันมีโรมอร์ฟิกโดยนิยามให้มีค่าสำหรับทุกๆ ค่า z ที่เป็นจำนวนเชิงซ้อน ยกเว้นเมื่อ z = 0, −1, −2, −3, ... ตามการต่อเนื่องวิเคราะห์ (analytic continuation) ซึ่งส่วนขยายดังกล่าวมักเป็นการอ้างถึงฟังก์ชันแกมมาโดยปกติ

นิยามแบบอื่น

เลออนฮาร์ด ออยเลอร์ และคาร์ล ไวแยร์สตราสส์ (Karl Weierstrass) ได้นิยามฟังก์ชันแกมมาโดยใช้ผลคูณอนันต์ ตามลำดับดังนี้

Γ ( z ) = lim n → ∞ n ! n z z ( z + 1 ) ⋯ ( z + n ) Γ ( z ) = e − γ z z ∏ n = 1 ∞ ( 1 + z n ) − 1 e z / n {\displaystyle {\begin{aligned}\Gamma (z)&=\lim _{n\to \infty }{\frac {n!\;n^{z}}{z\;(z+1)\cdots (z+n)}}\\\Gamma (z)&={\frac {e^{-\gamma z}}{z}}\prod _{n=1}^{\infty }\left(1+{\frac {z}{n}}\right)^{-1}e^{z/n}\\\end{aligned}}}

เมื่อ γ คือค่าคงที่ออยเลอร์-แมสเชโรนี ซึ่งสามารถใช้ได้กับทุกค่าของจำนวนเชิงซ้อน z ที่ไม่เท่ากับจำนวนเต็มลบหรือศูนย์

เราสามารถแสดงให้เห็นอย่างตรงไปตรงมาว่า นิยามของออยเลอร์สอดคล้องกับสมการเชิงฟังก์ชัน (1) ด้านบน เมื่อ z ไม่เท่ากับ 0, −1, −2, ...

Γ ( z + 1 ) = lim n → ∞ n ! n z + 1 ( z + 1 ) ( z + 2 ) ⋯ ( z + 1 + n ) = lim n → ∞ ( z n ! n z z ( z + 1 ) ( z + 2 ) ⋯ ( z + n ) n ( z + 1 + n ) ) = z Γ ( z ) lim n → ∞ n ( z + 1 + n ) = z Γ ( z ) {\displaystyle {\begin{aligned}\Gamma (z+1)&=\lim _{n\to \infty }{\frac {n!\;n^{z+1}}{(z+1)\;(z+2)\cdots (z+1+n)}}\\&=\lim _{n\to \infty }\left(z\;{\frac {n!\;n^{z}}{z\;(z+1)\;(z+2)\cdots (z+n)}}\;{\frac {n}{(z+1+n)}}\right)\\&=z\;\Gamma (z)\;\lim _{n\to \infty }{\frac {n}{(z+1+n)}}\\&=z\;\Gamma (z)\\\end{aligned}}}

ใกล้เคียง

ฟังก์ ฟังก์ชันพื้นและฟังก์ชันเพดาน ฟังก์ชัน (คณิตศาสตร์) ฟังก์ชันเลขชี้กำลัง ฟังก์ชันตรีโกณมิติ ฟังก์ชันแกมมา ฟังก์ชันนับจำนวนเฉพาะ ฟังก์ชันเลียปูนอฟ ฟังก์ชันแฮช ฟังก์เมทัล

แหล่งที่มา

WikiPedia: ฟังก์ชันแกมมา http://www.math.sfu.ca/~cbm/aands/page_253.htm http://www.danielsoper.com/statcalc/calc30.aspx http://www.exampleproblems.com/wiki/index.php?titl... http://functions.wolfram.com/GammaBetaErf/Gamma/ http://functions.wolfram.com/webMathematica/Functi... http://mathworld.wolfram.com/GammaFunction.html http://www.informatik.tu-darmstadt.de/TI/Mitarbeit... http://numbers.computation.free.fr/Constants/Misce... http://numbers.computation.free.fr/Constants/Misce... http://www.moshier.net/#Cephes