รูปแบบของสมการเชิงเส้นในสองมิติ ของ สมการเชิงเส้น

สมการเชิงเส้นที่ซับซ้อน อย่างเช่นตัวอย่างข้างบน สามารถเขียนใหม่โดยใช้กฎเกณฑ์ของพีชคณิตมูลฐานให้อยู่ในรูปแบบที่ง่ายขึ้น

ในสิ่งที่จะอธิบายต่อไปนี้ อักษรตัวใหญ่ใช้แทนค่าคงตัว (ที่ไม่ระบุจำนวน) ในขณะที่ x และ y คือตัวแปร

รูปแบบทั่วไป

A x + B y + C = 0 {\displaystyle Ax+By+C=0\!}

เมื่อ A กับ B ไม่เป็นศูนย์พร้อมกัน สมการในรูปแบบนี้มักเขียนให้ A ≥ 0 เพื่อความสะดวกในการคำนวณ กราฟของสมการจะเป็นเส้นตรง และทุกๆ เส้นตรงสามารถนำเสนอให้อยู่ในรูปแบบข้างต้นนี้ได้ เมื่อ A ไม่เท่ากับ 0 ระยะตัดแกน x จะอยู่ที่ระยะ −C/A และเมื่อ B ไม่เท่ากับ 0 ระยะตัดแกน y จะอยู่ที่ระยะ −C/B ส่วนความชันของเส้นตรงนี้มีค่าเท่ากับ −A/B

เช่น

รูปแบบมาตรฐาน

A x + B y = C {\displaystyle Ax+By=C\!}

เมื่อ A และ B ไม่เป็นศูนย์พร้อมกัน และทั้ง A, B, C จะต้องเป็นจำนวนเต็มที่มีตัวหารร่วมมากเท่ากับ 1 และมักเขียนให้ A ≥ 0 เพื่อความสะดวกเช่นกัน รูปแบบมาตรฐานนี้สามารถแปลงให้เป็นรูปแบบทั่วไปได้ไม่ยากนัก

เช่น 1. 2x - 3 = y

2. 2x - 3y = 14

3. -2x + 2y = 10

4. 6x + 4y = 14

5. 3x + 2y = 8

รูปแบบความชันและระยะตัดแกน

y = m x + b {\displaystyle y=mx+b\!}

เมื่อ m แทนความชันของเส้นตรง และ b คือระยะตัดแกน y ซึ่งเป็นพิกัด y ของจุดที่เส้นตรงนั้นตัดผ่านแกน y ถ้าหากให้ค่า x = 0 เราจะเห็นสมการนี้อยู่ในรูปแบบ y = b

รูปแบบจุดและความชัน

y − y 1 = m ⋅ ( x − x 1 ) {\displaystyle y-y_{1}=m\cdot (x-x_{1})\!}

เมื่อ m คือความชันของเส้นตรงและ (x1, y1) คือจุดใดๆ บนเส้นตรงนั้น ซึ่งสามารถเปลี่ยนให้อยู่ในรูปแบบความชันและระยะตัดแกนได้โดยง่าย รูปแบบจุดและความชันแสดงให้เห็นถึงระยะทางระหว่างจุดสองจุดบนเส้นตรงนั้นในแนวแกน x และแกน y โดยมีจุด (x1, y1) เป็นจุดยืน

ในบางโอกาสเราอาจเห็นรูปแบบจุดและความชันอยู่ในรูปแบบนี้

y − y 1 x − x 1 = m {\displaystyle {\frac {y-y_{1}}{x-x_{1}}}=m}

แต่อย่างไรก็ตาม ถ้าหาก x = x1 สมการนี้จะไม่มีความหมาย

รูปแบบระยะตัดแกน

x E + y F = 1 {\displaystyle {\frac {x}{E}}+{\frac {y}{F}}=1}

เมื่อ E และ F ต้องไม่เป็นศูนย์ทั้งคู่ กราฟของสมการนี้จะมีระยะตัดแกน x เท่ากับ E และระยะตัดแกน y เท่ากับ F รูปแบบระยะตัดแกนสามารถแปลงให้อยู่ในรูปแบบมาตรฐานได้โดยกำหนดให้ A = 1/E, B = 1/F และ C = 1

รูปแบบจุดสองจุด

y − k = q − k p − h ( x − h ) {\displaystyle y-k={\frac {q-k}{p-h}}(x-h)}

เมื่อ p ≠ h กราฟนี้จะเป็นเส้นตรงที่ลากผ่านจุด (h, k) และจุด (p, q) โดยมีความชันเท่ากับ m = (q − k) / (p − h) รูปแบบจุดสองจุดสามารถแปลงให้เป็นรูปแบบจุดและความชันได้ โดยการคำนวณหาค่าที่เจาะจงของความชันมาแทนที่ตำแหน่งของ m

รูปแบบอิงพารามิเตอร์

x = T t + U y = V t + W {\displaystyle {\begin{aligned}x&=Tt+U\\y&=Vt+W\end{aligned}}}

รูปแบบนี้เป็นสมการหลายชั้น (simultaneous equations) สองสมการในพจน์ของตัวแปรพารามิเตอร์ t ที่มีความชัน m = V/T โดยมีระยะตัดแกน x อยู่ที่ (VU−WT) / V และระยะตัดแกน y อยู่ที่ (WT−VU) / T

สมการรูปแบบนี้มีความสัมพันธ์กับรูปแบบจุดสองจุด เมื่อ T = p−h, U = h, V = q−k, และ W = k จะได้

x = ( p − h ) t + h y = ( q − k ) t + k {\displaystyle {\begin{aligned}x&=(p-h)t+h\\y&=(q-k)t+k\end{aligned}}}

ซึ่งในกรณีนี้ค่าของ t จะแปรผันตั้งแต่ 0 ที่จุด (h, k) ไปยัง 1 ที่จุด (p, q) ค่าของ t ที่อยู่ระหว่าง 0 กับ 1 ทำให้เกิดการประมาณค่าในช่วง (interpolation) ส่วนค่าอื่นของ t จะทำให้เกิดการประมาณค่านอกช่วง (extrapolation)

รูปแบบเส้นแนวฉาก

y sin ⁡ ϕ + x cos ⁡ ϕ − p = 0 {\displaystyle y\sin \phi +x\cos \phi -p=0\!}

เมื่อ φ คือมุมเอียงของเส้นแนวฉาก และ p คือความยาวของเส้นแนวฉาก เส้นแนวฉากนี้คือระยะทางของส่วนของเส้นตรงที่สั้นที่สุด ที่เชื่อมระหว่างกราฟเส้นตรงของสมการเชิงเส้นกับจุดกำเนิด รูปแบบเส้นแนวฉากสามารถแปลงจากรูปแบบทั่วไปได้โดยหารสัมประสิทธิ์ทั้งหมดด้วย A 2 + B 2 {\displaystyle {\sqrt {A^{2}+B^{2}}}} และถ้าหาก C > 0 ให้คูณสัมประสิทธิ์ทั้งหมดด้วย −1 เพื่อให้ค่าคงตัวตัวสุดท้ายติดลบ รูปแบบนี้เรียกว่า รูปแบบมาตรฐานเฮสส์ ซึ่งตั้งขึ้นเพื่อเป็นเกียรติแด่นักคณิตศาสตร์ชาวเยอรมัน ลุดวิก ออตโต เฮสส์ (Ludwig Otto Hesse)

กรณีพิเศษ

y = F {\displaystyle y=F\!}

สมการนี้อยู่ในรูปแบบมาตรฐานเมื่อ A = 0 และ B = 1 หรือในรูปแบบความชันและระยะตัดแกนเมื่อความชัน m = 0 กราฟของสมการนี้จะเป็นเส้นตรงในแนวนอนโดยที่มีระยะตัดแกน y เท่ากับ F ถ้า F ≠ 0 กราฟนี้จะไม่มีระยะตัดแกน x แต่ถ้า F = 0 กราฟนี้จะมีระยะตัดแกน x เป็นจำนวนจริงทุกจำนวน

x = E {\displaystyle x=E\!}

สมการนี้อยู่ในรูปแบบมาตรฐานเมื่อ A = 1 และ B = 0 กราฟของสมการนี้จะเป็นเส้นตรงในแนวดิ่งโดยที่มีระยะตัดแกน x เท่ากับ E ส่วนความชันนั้นไม่นิยาม ถ้า E ≠ 0 กราฟนี้จะไม่มีระยะตัดแกน y แต่ถ้า E = 0 กราฟนี้จะมีระยะตัดแกน y เป็นจำนวนจริงทุกจำนวน

y = y {\displaystyle y=y\!} และ x = x {\displaystyle x=x\!}

ในกรณีนี้ทั้งตัวแปรและและค่าคงตัวทั้งหมดถูกตัดออกไป เหลือไว้เพียงประพจน์ที่เป็นจริงอย่างชัดเจน สมการเหล่านี้จะเรียกว่าเป็นเอกลักษณ์ และไม่จำเป็นที่จะพิจารณาในรูปแบบกราฟ (เนื่องจากหมายถึงจุดทุกจุดบนระนาบ xy) ดังตัวอย่าง 2 x + 4 y = 2 ( x + 2 y ) {\displaystyle 2x+4y=2(x+2y)} นิพจน์ทั้งสองข้างของเครื่องหมายเท่ากับนั้นเท่ากันเสมอ ไม่ว่าค่าของ x และ y จะเป็นค่าใด

โปรดสังเกตว่าการปรับเปลี่ยนทางพีชคณิต อาจทำให้ประพจน์เกิดความเป็นเท็จ อาทิ 1 = 0 ซึ่งเราจะเรียกสมการนั้นว่าเป็น สมการที่ขัดแย้งกัน หมายความว่า ไม่ว่าค่าของ x และ y จะเป็นค่าใด สมการก็ยังเป็นเท็จอยู่เสมอและไม่สามารถวาดกราฟได้ ดังเช่นสมการนี้ 3 x + 2 = 3 x − 5 {\displaystyle 3x+2=3x-5}

ใกล้เคียง

สมการ สมการเชิงเส้น สมการนาเวียร์–สโตกส์ สมการของแมกซ์เวลล์ สมการกำลังสอง สมการกำลังสาม สมการชเรอดิงเงอร์ สมการจรวดซีออลคอฟสกี สมการแฟรแนล สมการเชิงอนุพันธ์แบร์นูลลี