การผลิตแรงเคลื่อนไฟฟ้า ของ แรงเคลื่อนไฟฟ้า

แหล่งที่มาจากสารเคมี

ดูบทความหลักที่: เซลล์ไฟฟ้าเคมี
เส้นทางปฏิกิริยาโดยทั่วไปต้องใช้สารปฏิกิริยาในช่วงเริ่มต้นเพื่อที่จะข้ามอุปสรรคพลังงาน เข้าสู่สถานะช่วงกลางและในที่สุดก็เกิดขึ้นในรูปแบบของพลังงานที่ต่ำกว่า ถ้าการแยกประจุเข้ามาเกี่ยวข้อง เป็นภาระที่เกี่ยวข้องกับความแตกต่างของพลังงานนี้สามารถทำให้เกิดแรงเคลื่อนไฟฟ้า ดู Bergmann et al.[27] และการเปลี่ยนสถานะ เซลล์กัลวานิกโดยใช้สะพานเกลือ

คำถามที่ว่าแบตเตอรี่ (เซลล์กัลวานิก) สามารถสร้างแรงเคลื่อนไฟฟ้าได้อย่างไรเป็นคำถามหนึ่งที่ครอบงำนักวิทยาศาสตร์จำนวนมากในช่วงศตวรรษที่ 19 "แปลงของแรงเคลื่อนไฟฟ้​​า" ในที่สุดก็ถูกกำหนดโดยนายวอลเธอร์ เนินส์ ให้เป็นเบื้องแรกที่จะสัมผัสกันระหว่างขั้วไฟฟ้าและอิเล็กโทรไลต์[28]

โมเลกุลคือกลุ่มของอะตอมที่ยึดเข้าด้วยกันด้วยพันธะทางเคมี และพันธเหล่านี้จะประกอบด้วยแรงไฟฟ้าระหว่างอิเล็กตรอน (ลบ) กับโปรตอน (บวก) โมเลกุลที่อยู่แยกกันเป็นตัวตนที่ถาวร แต่เมื่อโมเลกุลที่ต่างกันถูกนำเข้ามารวมกัน บางชนิดของโมเลกุลสามารถที่จะขโมยอิเล็กตรอนจากโมเลกุลอื่น เป็นผลให้เกิดการแยกประจุ การกระจายเหล่านี้ของประจุจะเกิดขึ้นใหม่พร้อมกันกับการเปลี่ยนแปลงในพลังงานของระบบ และโครงสร้างของอะตอมในโมเลกุล[29] การได้รับอิเล็กตรอนเพิ่มจะถูกเรียกว่า "รีดักชัน" (reduction) และการสูญเสียอิเล็กตรอนไปจะถูกเรียกว่า "ออกซิเดชัน" ปฏิกิริยาที่มีการแลกเปลี่ยนอิเล็กตรอนดังกล่าว (ซึ่งเป็นพื้นฐานสำหรับแบตเตอรี่) จะเรียกว่าปฏิกิริยารีดักชัน-ออกซิเดชันหรือปฏิกิริยารีดอกซ์ ในแบตเตอรี่ ขั้วหนึ่งจะประกอบด้วยวัสดุที่ได้รับอิเล็กตรอนเพิ่มจากตัวละลายและอีกชั้วหนึ่งจะเสียอิเล็กตรอนอันเนื่องมาจากแอตทริบิวต์พื้นฐานของโมเลกุลเหล่านี้ พฤติกรรมที่เหมือนกันจะสามารถเห็นได้ในตัวอะตอมมันเองและความสามารถของพวกมันในการขโมยอิเล็กตรอนจะถูกเรียกว่าเป็น electronegativity ของพวกมัน[30]

ตัวอย่างเช่นเซลล์แดนีลล์ ประกอบด้วยขั้วลบ (อังกฤษ: anode) ที่ทำจากสังกะสี (ตัวสะสมอิเล็กตรอน) มันถูกออกซิไดซ์เมื่อมันละลายลงในสารละลายสังกะสีซัลเฟต สังกะสีที่ละลายจะทิ้งอิเล็กตรอนของมันไว้ข้างหลังติดอยู่ในขั้วตามปฏิกิริยาออกซิเดชัน (s = อิเล็กโทรดที่เป็นของแข็ง; aq = สารละลายน้ำ) ดังนั้น: Zinc solid = Zinc solution Cation + 2 electrons ตามสมการ

Z n ( s ) → Z n ( a q ) 2 + + 2 e −   {\displaystyle \mathrm {Zn_{(s)}\rightarrow Zn_{(aq)}^{2+}+2e^{-}\ } }

ในส่วนที่เป็นครึ่งเซลล์นั้น สังกะสีซัลเฟตเป็นอิเล็กโทรไลต์ มันเป็นสารละลายที่มีสังกะสีไอออนประจุบวก (อังกฤษ: zinc cation) Z n 2 + {\displaystyle \mathrm {Zn} _{}^{2+}} และซัลเฟตไอออนประจุลบ (อังกฤษ: sulfate anion) S O 4 2 −   {\displaystyle \mathrm {SO} _{4}^{2-}\ } ที่มีผลรวมของประจุเป็นศูนย์

ในอีกครึ่งเซลล์ มีทองแดงซัลเฟตเป็นอิเล็กโทรไลต์ ทองแดงไอออนประจุบวกในอิเล็กโทรไลต์จะถูกดึงเข้าหาขั้วทองแดงที่พวกมันจะแนบตัวเองเข้ากับขั้วนี้เนื่องจากพวกมันได้รับอิเล็กตรอนจากขั้วทองแดงจากปฏิกิริยารีดักชันดังนี้:

C u ( a q ) 2 + + 2 e − → C u ( s )   {\displaystyle \mathrm {Cu_{(aq)}^{2+}+2e^{-}\rightarrow Cu_{(s)}\ } }

เป็นผลให้เกิดการขาดทุนอิเล็กตรอนในทองแดงที่เป็นขั้วบวก (อังกฤษ: cathode) ความแตกต่างของอิเล็กตรอนส่วนเกินในขั้วลบและการขาดดุลของอิเล็กตรอนในขั้วบวกสร้างศักย์ไฟฟ้าระหว่างสองขั้วไฟฟ้า (การอภิปรายในรายละเอียดของกระบวนการของการถ่ายโอนแบบจุลภาคของอิเล็กตรอนระหว่างขั้วไฟฟ้าและไอออนในอิเล็กโทรไลต์ในปีอาจพบได้ในคอนเวย์)[31]

หากขั้วลบและขั้วบวกถูกเชื่อมต่อด้วยตัวนำภายนอก อิเล็กตรอนจะไหลออกจากขั้วลบผ่านวงจรภายนอก (หลอดไฟในรูป) ในขณะที่ไอออนทั้งหลายจะผ่านสะพานเกลือเพื่อรักษาสมดุลของประจุจนถึงเวลาที่ขั้วบวกและขั้วลบถึงจุดสมดุลไฟฟ้าที่มีแรงดันเป็นศูนย์และสมดุลเคมีเกิดขึ้นในเซลล์ ในกระบวนการนี้ขั้วลบสังกะสีจะละลายในขณะที่ขั้วไฟฟ้าทองแดงจะพอกพูนด้วยทองแดง[32] สิ่งที่เรียกว่า "เกลือสะพาน" ไม่ได้ทำด้วยเกลือแต่อาจจะทำจากวัสดุที่สามารถดูดซับเหมือนไส้ตะเกียงไอออนบวกและไอออนลบ (เกลือ) ในสารละลาย โดยที่การไหลของไอออนประจุบวกจะไหลไปตาม "สะพาน" เป็นจำนวนเทียบเท่ากับประจุลบที่ไหลไปในทิศทางตรงกันข้าม

ถ้าหลอดไฟจะถูกถอดออกไป (วงจรเปิด) แรงเคลื่อนไฟฟ้าระหว่างขั้วไฟฟ้าจะถูกต่อต้านจากสนามไฟฟ้าที่เกิดเนื่องจากการแยกประจุ และปฏิกิริยาทั้งหลายก็จะหยุด

สำหรับปฏิกิริยาเคมีโดยเฉพาะของเซลล์นี้ ที่ 298 K (อุณหภูมิห้อง) แรงเคลื่อนไฟฟ้า ℰ = 1.0934 V ด้วยค่าสัมประสิทธิ์อุณหภูมิ dℰ/dT = -4.53×10-4 V/K[33]

เซลล์โวลตา

นายแอเลสซานโดร โวลตา ได้พัฒนาเซลล์ไฟฟ้าราวปี 1792 และนำเสนอผลงานของเขาเมื่อวันที่ 20 มีนาคม 1800[34] โวลตาชี้ชัดอย่างถูกต้องในบทบ​​าทของขั้วไฟฟ้าที่แตกต่างกันในการผลิตแรงดันไฟฟ้า แต่ละเลยอย่างไม่ถูกต้องในบทบาทใด ๆ สำหรับอิเล็กโทรไลต์[35] โวลตาได้เรียงลำดับโลหะใน 'แถวแรงดัน' "นั่นคือกล่าวได้ว่าตัวหนึ่งตัวใดในรายการจะกลายเป็นบวกเมื่อติดต่อกับตัวใดตัวหนึ่งที่อยู่ข้างหน้า แต่จะเป็นลบเมื่อติดต่อกับตัวที่อยู่ข้างหลัง"[36] สัญลักษณ์โดยทั่วไปในภาพแสดงของวงจรนี้ ( –||– ) จะมีขีดยาว 1 เส้นและขีดสั้น 1 เส้นเพื่อระบุถึงขีดยาวเหนือกว่า กฎของโวลตาเกี่ยวกับขั้วแรงเคลื่อนไฟฟ้าที่ต่อต้านหมายถึงว่า สมมติว่ามีขั้วไฟฟ้าสิบขั้ว (สังกะสีหนึ่งขั้วและวัสดุอื่น ๆ เก้าขั้วเป็นตัวอย่าง) จะสามารถสร้างเซลล์โวตาอิกได้ 45 แบบ (10×9/2)

แรงเคลื่อนไฟฟ้​​าของเซลล์

แรงเคลื่อนไฟฟ้​​าที่ผลิตโดยเซลล์ปฐมภูมิ (แบบใช้ครั้งเดียว) และทุติยภูมิ (แบบชาร์จไฟได้) มักจะมีขนาดไม่กี่โวลต์ ตัวเลขที่แสดงด้านล่างจะเป็นโดยประมาณ เพราะ EMF จะแปรไปตามขนาดของโหลดและสถานะของความอ่อนล้าของเซลล์

แรงเคลื่อนไฟฟ้​​าสารเคมีในเซลล์ชื่อสามัญ
ขั้วลบสารละลาย, อิเล็กโทรไลต์ขั้วบวก
1.2 Vแคดเมียมน้ำ, โปแตสเซียมไฮดรอกไซด์NiO(OH)นิเกิลแคดเมียม
1.2 Vโลหะผสมหายาก (ใช้ดูดซับไฮโดรเจน)น้ำ, โปแตสเซียมไฮดรอกไซด์นิเกิลนิเกิลเมททัลไฮดรายด์
1.5 Vสังกะสีน้ำ, แอมโมเนียมหรือสังกะสีคลอไรด์คาร์บอน, แมงกานีสไดอ๊อกไซด์สังกะสีคาร์บอน
2.1 Vตะกั่วน้ำ, กรดซัลฟิวริกตะกั่วไดอ๊อกไซด์ตะกั่วกรด
3.6 V ถึง 3.7 Vแกรไฟท์สารละลายอินทรีย์, เกลือลิเทียมLiCoO2ลิเทียมไอออน
1.35 Vสังกะสีน้ำ, โซเดียมหรือโปแตสเซียมไฮดรอกไซด์HgOเซลล์ปรอท

การเหนี่ยวนำแม่เหล็กไฟฟ้า

บทความหลัก: กฎการเหนี่ยวนำของฟาราเดย์หลักการของการเหนี่ยวนำแม่เหล็กไฟฟ้ากล่าวว่าสนามแม่เหล็กที่ขึ้นกับเวลาจะผลิตสนามไฟฟ้าหมุนเวียน สนามแม่เหล็กที่ขึ้นกับเวลาสามารถผลิตขึ้นได้โดยการเคลื่อนที่ของแม่เหล็กให้สัมพันธ์กับวงจรหนึ่ง หรือโดยการเคลื่อนที่ของวงจรหนึ่งที่สัมพันธ์กับอีกวงจรหนึ่ง (อย่างน้อยหนึ่งในวงจรเหล่านี้จะต้องมีกระแสไหล) หรือโดยการเปลี่ยนแปลงกระแสในวงจรคงที่ ผลกระทบต่อตัววงจรเองที่มีการเปลี่ยนแปลงกระแสเรียกว่าการเหนี่ยวนำตัวเอง; ผลกระทบกับวงจรอื่นเรียกว่าการเหนี่ยวนำซึ่งกันและกัน

สำหรับวงจรหนึ่งที่กำหนดให้ แรงเคลื่อนไฟฟ้าที่เกิดจากการเหนี่ยวนำแม่เหล็กไฟฟ้าจะถูกกำหนดอย่างเดียวโดยอัตราการเปลี่ยนแปลงของสนามแม่เหล็กที่พาดผ่านวงจรตามกฎการเหนี่ยวนำของฟาราเดย์

EMF จะถูกเหนี่ยวนำในขดลวดหรือตัวนำเมื่อใดก็ตามที่มีการเปลี่ยนแปลงในสนามแม่เหล็กที่เชื่อมโยงอยู่ ทั้งนี้ขึ้นอยู่กับวิธีการที่เกิดการเปลี่ยนแปลงนั้น มีสองชนิด: 1. เมื่อตัวนำเคลื่อนที่ไปในสนามแม่เหล็กที่อยู่กับที่เพื่อสร้างการเปลี่ยนแปลงในสนามแม่เหล็ก แรงเคลื่อนไฟฟ้าจะถูกเหนี่ยวนำแบบไฟฟ้าสถิตย์ แรงเคลื่อนไฟฟ้าที่สร้างขึ้นจากการเคลื่อนไหวมักจะถูกเรียกว่า EMF เคลื่อนไหว เมื่อการเปลี่ยนแปลงของสนามแม่เหล็กเกิดขึ้นรอบ ๆ ตัวนำอยู่กับที่ แรงเคลื่อนไฟฟ้าจะถูกเหนี่ยวนำแบบไดนามิก แรงเคลื่อนไฟฟ้​​าที่เกิดจากสนามแม่เหล็กที่แปรตามเวลาจะเรียกว่า EMF หม้อแปลง

ศักย์สัมผัส

ดูเพิ่มเติม: ศักย์โวลตาและศักย์ไฟฟ้าเคมี

เมื่อของแข็งของวัสดุสองชนิดที่แตกต่างกันสัมผัสกัน สมดุลทางอุณหพลศาสตร์จะเกิดขึ้นได้เมื่อหนึ่งในของแข็งนั้นมีศักย์ไฟฟ้าสูงกว่าอีกตัวหนึ่ง ศักย์ไฟฟ้านี้เรียกว่าศักย์สัมผัส[37] โลหะที่ไม่เหมือนกันเมื่อสัมผัสกันจะผลิตสิ่งที่เป็นเรียกว่าแรงเคลื่อนไฟฟ้าที่จุดสัมผัส หรือศักย์ของกัลวานี ขนาดของความต่างศักย์นี้มักจะถูกพูดถึงเป็นความแตกต่างของระดับเฟอมิ (อังกฤษ: Fermi Level) ในสองของแข็งเมื่อพวกมันอยู่ในสภาวะเป็นกลางในประจุ ซึ่งเป็นจุดที่ระดับเฟอมิ (ชื่อสำหรับศักย์ทางเคมีของระบบอิเล็กตรอนระบบหนึ่ง[38][39]) จะอธิบายถึงพลังงานที่จำเป็นในการย้ายอิเล็กตรอนออกจากร่างกายไปยังบางจุดที่ใช้ร่วมกัน (เช่นกราวด์)[40] ถ้ามีข้อได้เปรียบทางพลังงานในการนำอิเล็กตรอนจากร่างกายหนึ่งไปยังอีกร่างกายหนึ่ง การโอนเช่นนั้นก็จะเกิดขึ้น การโอนทำให้เกิดการแยกประจุ ที่ร่างกายหนึ่งจะได้รับอิเล็กตรอนและอีกร่างกายหนึ่งสูญเสียอิเล็กตรอน การถ่ายโอนประจุนี้ทำให้เกิดความต่างศักย์ระหว่างร่างกายทั้งสอง ซึ่งบางส่วนหักล้างศักย์ที่มีต้นกำเนิดจากหน้าสัมผัส และก็ถึงจุดสมดุลในที่สุด ที่จุดสมดุลทางอุณหพลศาสตร์ระดับเฟอมิทั้งหมดจะมีค่าเท่ากัน (พลังงานในการเคลื่อนย้ายอิเล็กตรอนจะเท่ากัน) และในขณะนี้จะมีศักย์ไฟฟ้าสถิตฝังในตัวระหว่างร่างกายทั้งสอง ความแตกต่างในระดับเฟอมิทั้งหลายที่มีอยู่แต่เดิมก่อนสัมผัสจะเรียกว่าแรงเคลื่อนไฟฟ้า[41] ศักย์สัมผัสไม่สามารถขับเคลื่อนกระแสให้ไหลได้อย่างต่อเนื่องผ่านโหลดที่ต่ออยู่ขั้วของมันเพราะกระแสนั้นจะเกี่ยวข้องกับการถ่ายโอนประจุ ไม่มีกลไกใดที่จะทำให้การถ่ายโอนดังกล่าวดำเนินการต่อไปได้ และดังนั้นก็ไม่สามารถรักษาระดับของกระแสต่อไปได้ เมื่อบรรลุความสมดุลแล้ว

อาจมีบางคนถามว่าทำไมศักย์สัมผัสไม่ปรากฏในกฎของแรงดันไฟฟ้าของเคอร์ชอฟฟ์ที่เป็นตัวช่วยหนึ่งให้กับผลรวมของศักย์ไฟฟ้าตกคร่อม คำตอบตามประเพณีก็คือวงจรใด ๆ จะเกี่ยวข้องกับไม่เพียงแต่ไดโอดหรือจังชันบางชนิดเท่านั้น แต่ยังเกี่ยวข้องกับศักย์สัมผัสทั้งหมดที่เกิดเนื่องจากการเดินสายไฟและศักย์อื่นรอบ ๆ วงจรทั้งหมดอีกด้วย ผลรวมของศักย์สัมผัส ทั้งหมด จะเป็นศูนย์ ดังนั้นพวกมันอาจถูกละเว้นในกฎของเคอร์ชอฟฟ์[42][43]

แหล่งที่มา

WikiPedia: แรงเคลื่อนไฟฟ้า http://www.flipkart.com/basic-physics-kongbam-chan... http://books.google.com/?id=5sd9SAoRjgQC&pg=PA67 http://books.google.com/?id=6_yQ-dEGc5wC&pg=PA576 http://books.google.com/?id=82f-gIvtC7wC&pg=PA176 http://books.google.com/?id=9oEifMuMAVsC&pg=PA240 http://books.google.com/?id=9vzti90Q8i0C&pg=RA1-PA... http://books.google.com/?id=BMVR37-8Jh0C&pg=PA850 http://books.google.com/?id=Ht4T7C7AXZIC&pg=RA1-PA... http://books.google.com/?id=ICASAAAAYAAJ&pg=PA219&... http://books.google.com/?id=L7AUi7ltCksC&pg=PA100