แรงเคลื่อนไฟฟ้า
แรงเคลื่อนไฟฟ้า

แรงเคลื่อนไฟฟ้า

แรงเคลื่อนไฟฟ้า (อังกฤษ: electromotive force หรือย่อว่า emf สัญลักษณ์ E {\displaystyle {\mathcal {E}}} และมีค่าเป็นโวลต์)[1] เป็นแรงดันไฟฟ้าที่พัฒนาขึ้นมาจากแหล่งที่มาของพลังงานไฟฟ้าใด ๆ เช่นแบตเตอรี่หรือเครื่องกำเนิดไฟฟ้า โดยทั่วไปมันจะถูกกำหนดให้เป็นศักย์ไฟฟ้าสำหรับแหล่งจ่ายไฟในวงจร[2] อุปกรณ์ที่จ่ายพลังงานไฟฟ้าจะถูกเรียกว่าแปลงแรงเคลื่อนไฟฟ้า (อังกฤษ: bed of emf) หรือ emf. Emf จะแปลงพลังงานเคมี, พลังงานเครื่องกล, และพลังงานรูปแบบอื่นให้เป็นพลังงานไฟฟ้า[3] ผลผลิตของอุปกรณ์ดังกล่าวก็ยังถูกเรียกว่า emf อีกด้วยคำว่า "แรง" ในกรณีนี้ไม่ได้ใช้เพื่อหมายถึงแรงในเชิงกลที่มีหน่วยเป็นนิวตัน แต่เป็นศักย์หรือพลังงานต่อหน่วยประจุ มีหน่วยเป็นโวลต์ในการเหนี่ยวนำแม่เหล็กไฟฟ้า EMF สามารถถูกกำหนดรอบ ๆ วงรอบปิดวงหนึ่งว่าเป็นงานแม่เหล็กไฟฟ้าที่กระทำบนประจุตัวหนึ่งถ้ามันเดินทางรอบวงนั้นหนึ่งรอบ[4] (ในขณะที่ประจุเดินทางรอบวงลูป มันก็สามารถสูญเสียพลังงานไปพร้อมกันพลังงานที่ได้รับมาผ่านความต้านทานกลายเป็นพลังงานความร้อน) สำหรับสนามแม่เหล็กที่แปรผันตามเวลาที่มีการเชื่อมโยงอยู่กับลูป สนามศักย์ไฟฟ้​​าที่มีหน่วยเป็นสเกลาร์จะยังไม่ถูกกำหนดเนื่องจากสนามไฟฟ้าแบบเวกเตอร์ยังคงไหลเวียน แต่อย่างไรก็ตาม EMF ก็ทำงานแล้วและสามารถวัดได้เป็นศักย์ไฟฟ้าเสมือนรอบลูปนั้น[5]ในกรณีของอุปกรณ์สองขั้ว (เช่นแบตเตอรีไฟฟ้าเคมีหรือเครื่องกำเนิดไฟฟ้าแบบแม่เหล็กไฟฟ้า) ซึ่งถูกจำลองเป็นวงจรสมมูลของ Thévenin EMF ที่เทียบเท่าสามารถวัดได้เป็นความต่างศักย์แบบวงจรเปิดหรือแรงดันระหว่างขั้วทั้งสอง ความต่างศักย์นี้สามารถขับกระแสให้ไหลได้ถ้าขั้วไฟฟ้าทั้งสองถูกต่อเข้ากับวงจรภายนอกอุปกรณ์ที่ให้แรงเคลื่อนไฟฟ้าจะรวมถึงเซลล์ไฟฟ้าเคมี, อุปกรณ์เทอร์โมอิเล็กตริก, เซลล์แสงอาทิตย์, โฟโตไดโอด, เครื่องกำเนิดไฟฟ้า, หม้อแปลง, และแม้แต่เครื่องกำเนิดไฟฟ้าแวนเดอแกรฟฟ์[5][6] ในธรรมชาติ EMF ถูกสร้างขึ้นเมื่อใดก็ตามที่ความผันผวนของสนามแม่เหล็กจะเกิดขึ้นผ่านพื้นผิว การเคลื่อนที่ของสนามแม่เหล็กโลกในระหว่างพายุแม่เหล็กทำให้เกิดกระแสในกริดไฟฟ้​​าเมื่อเส้นสนามแม่เหล็กเคลื่อนที่ไปรอบ ๆ และตัดผ่านตัวนำในกรณีที่เป็นแบตเตอรี่ การแยกตัวของประจุที่ก่อให้เกิดความต่างแรงดันระหว่างขั้วทั้งสองสามารถทำสำเร็จได้โดยปฏิกิริยาเคมีที่ขั้วไฟฟ้าที่จะแปลงพลังงานเคมีให้เป็นพลังงานศักย์แม่เหล็กไฟฟ้า[7][8] เซลล์ไฟฟ้าอาจคิดว่าเป็นการมี "ปั๊มประจุ" ที่มีขนาดเท่าอะตอมที่แต่ละขั้วไฟฟ้า นั่นคือ[9]แหล่งที่มาของแรงเคลื่อนไฟฟ้าอาจจะคิดได้ว่าเป็นชนิดหนึ่งของปั้มประจุที่ทำหน้าที่ในการเคลื่อนย้ายประจุบวกจากจุดที่มีศักย์ไฟฟ้าต่ำผ่านตัวมันเองไปยังจุดที่มีศักย์ไฟฟ้าที่สูงกว่า ... โดยวิธีการทางเคมี, ทางกลไกหรือทางอื่น ๆ แหล่งที่มาของแรงเคลื่อนไฟฟ้าจะทำงาน dW บนประจุนั้นเพื่อที่จะเคลื่อนย้ายประจุไปยังขั้วที่มีศักยภาพสูง แรงเคลื่อนไฟฟ้า ℰ ของแหล่งที่มาจะถูกกำหนดให้เป็นงาน dW ที่ทำบนประจุ dq ดังนั้น ℰ = dW/dqราวปี 1830 ไมเคิล ฟาราเดย์ระบุว่าปฏิกิริยาในแต่ละรอยต่อสองรอยต่อระหว่างขั้วไฟฟ้ากับสารอิเล็กโทรไลต์จะให้ "EMF" สำหรับเซลล์ไฟฟ้า นั่นคือ ปฏิกิริยาเหล่านี้เป็นตัวขับเคลิ่อนกระแสและไม่ได้เป็นแหล่งที่มาของพลังงานที่ไม่มีที่สิ้นสุดอย่างที่ติดไว้แต่แรก[10] ในกรณีของวงจรเปิด การแยกตัวของประจุจะดำเนินต่อไปจนกระทั่งสนามไฟฟ้าจากประจุที่ถูกแยกตัวมีปริมาณเพียงพอที่จะหยุดปฏิกิริยา หลายปีก่อนหน้านี้ อาเลสซานโดร โวลตา ผู้ที่วัดความต่างศักย์ของจุดสัมผัสระหว่างโลหะกับโลหะ (ขั้วไฟฟ้ากับอิเล็กโทรด) ของเซลล์ของเขา เขาได้ให้ความคิดเห็นที่ไม่ถูกต้องที่ว่าจุดสัมผัสเพียงอย่างเดียว (โดยไม่คำนึงถึงปฏิกิริยาทางเคมี) เป็นต้นกำเนิดของ EMFในกรณีของเครื่องกำเนิดไฟฟ้า สนามแม่เหล็กที่แปรตามเวลาภายในเครื่องกำเนิดไฟฟ้าจะสร้างสนามไฟฟ้าผ่านการเหนี่ยวนำแม่เหล็กไฟฟ้า ซึ่งมีผลในการสร้างความต่างแรงดันระหว่างขั้วทั้งสองของเครื่องกำเนิดไฟฟ้า การแยกตัวของประจุจะเกิดขึ้นภายในเครื่องกำเนิดไฟฟ้าที่อิเล็กตรอนจะไหลออกไปจากขั้วไฟฟ้าหนึ่งไปยังอีกขั้วไฟฟ้าหนึ่ง จนกระทั่ง ในกรณีวงจรเปิด สนามไฟฟ้าที่พอเพียงจะสะสมขึ้นจนทำให้การแยกตัวของประจุดำเนินต่อไปไม่ได้ อีกครั้ง EMF จะเผชิญหน้ากับแรงดันไฟฟ้าอันเกิดจากการแยกประจุ ถ้ามีโหลดต่อเข้าไป แรงดันไฟฟ้านี้สามารถขับเคลื่อนกระแสได้ หลักการทั่วไปในการควบคุม EMF ในเครื่องจักรไฟฟ้าดังกล่าวเป็นกฎการเหนี่ยวนำของฟาราเดย์

แหล่งที่มา

WikiPedia: แรงเคลื่อนไฟฟ้า http://www.flipkart.com/basic-physics-kongbam-chan... http://books.google.com/?id=5sd9SAoRjgQC&pg=PA67 http://books.google.com/?id=6_yQ-dEGc5wC&pg=PA576 http://books.google.com/?id=82f-gIvtC7wC&pg=PA176 http://books.google.com/?id=9oEifMuMAVsC&pg=PA240 http://books.google.com/?id=9vzti90Q8i0C&pg=RA1-PA... http://books.google.com/?id=BMVR37-8Jh0C&pg=PA850 http://books.google.com/?id=Ht4T7C7AXZIC&pg=RA1-PA... http://books.google.com/?id=ICASAAAAYAAJ&pg=PA219&... http://books.google.com/?id=L7AUi7ltCksC&pg=PA100