เทคโนโลยี ของ การเข้าถึงอินเทอร์เน็ต

เทคโนโลยีการเข้าถึงโดยทั่วไปใช้โมเด็มซึ่งจะแปลงข้อมูลดิจิทัลให้เป็นแอนะล็อกเพื่อการส่งผ่านเครือข่ายอนาล็อกเช่นเครือข่ายโทรศัพท์และสายเคเบิล คอมพิวเตอร์หรืออุปกรณ์อื่นที่เข้าถึงอินเทอร์เน็ตจะเชื่อมต่อโดยตรงกับโมเด็มที่ติดต่อสื่อสารกับผู้ให้บริการอินเทอร์เน็ต (ISP) หรือการเชื่อมต่ออินเทอร์เน็ตของโมเด็มจะถูกแชร์ผ่านเครือข่ายพื้นที่ท้องถิ่นหรือแลน (LAN) ซึ่งจะให้การเข้าถึงในพื้นที่จำกัด เช่นบ้าน, โรงเรียน, ห้องปฏิบัติการคอมพิวเตอร์หรืออาคารสำนักงาน

แม้ว่าการเชื่อมต่อกับ LAN อาจให้อัตราข้อมูลที่สูงมากภายใน LAN แต่ความเร็วในการเข้าถึงอินเทอร์เน็ตที่แท้จริงจะถูกจำกัดโดยผู้ให้บริการอินเทอร์เน็ต (ISP) LAN อาจมีทั้งแบบใช้สายและไร้สาย อีเทอร์เน็ต บนสายเกรียวคู่และ Wi-Fi เป็นสองเทคโนโลยีส่วนใหญ่ที่ใช้ในการสร้างระบบแลนในวันนี้ แต่ ARCNET, Token ring, LocalTalk, FDDI, และเทคโนโลยีอื่น ๆ เคยถูกนำมาใช้ในอดีตที่ผ่านมา

การเข้าถึงอินเทอร์เน็ตส่วนใหญ่ในวันนี้คือผ่าน LAN มักจะเป็น LAN ขนาดเล็กมากที่มีเพียงหนึ่งหรือสองอุปกรณ์ที่ต่อกัน และในขณะที่แลนเป็นรูปแบบสำคัญของการเข้าถึงอินเทอร์เน็ต สิ่งนี้สร้างคำถามถึงวิธีการและอัตราการส่งข้อมูลที่ LAN จะเชื่อมต่อกับอินเทอร์เน็ตทั่วโลก เทคโนโลยีที่อธิบายไว้ด้านล่างจะถูกใช้เพื่อทำการเชื่อมต่อเหล่านี้

การเข้าถึงบรอดแบนด์แบบเดินสาย

คำว่าบรอดแบนด์หมายถึงเทคโนโลยีการเข้าถึงข้อมูลอินเทอร์เน็ตที่ให้อัตราการรับส่งที่สูง เทคโนโลยีเหล่านี้ใช้สายไฟหรือสายเคเบิลใยแก้วนำแสงในทางตรงกันข้ามกับบรอดแบนด์ไร้สาย

Dial-up access

ตัวอย่างเสียงของdial-up modem ขณะกำลังพยายามสร้างการเชื่อมโยงกับISPท้องถิ่นเพื่อเข้าระบบอินเทอร์เน็ต

หากมีปัญหาในการเล่นไฟล์นี้ ดูที่ วิธีใช้สื่อ

การเข้าถึงแบบ Dial-Up ใช้โมเด็มและโทรศัพท์ที่ทำงานกับ public switched telephone network (PSTN) เพื่อเชื่อมต่อกับโมเด็มของผู้ให้บริการอินเทอร์เน็ต โมเด็มฝั่งผู้ใช้แปลงสัญญาณดิจิทัลของคอมพิวเตอร์เป็นสัญญาณแอนะล็อกที่เดินทางผ่านสายโทรศัพท์ท้องถิ่นจนถึงชุมสายของบริษัทโทรศัพท์หรือ central office (CO) จากนั้นหลังจากทำการตรวจสอบบัญชีผู้ใช้ว่าถูกต้องจึงจะเชื่อมโยงผู้ใช้เข้ากับระบบอินเทอร์เน็ต

การดำเนินงานแบบ dial-up จะใช้ช่องความถี่เดียว และจะครอบครองสายโทรศัพท์แต่ผู้เดียวและเป็นหนึ่งในวิธีที่ช้าที่สุดของการเข้าถึงอินเทอร์เน็ต แบบ Dial-Up มักจะเป็นเพียงรูปแบบของการเข้าถึงอินเทอร์เน็ตที่มีอยู่ในพื้นที่ชนบทเพราะมันไม่จำเป็นต้องมีโครงสร้างพื้นฐานใหม่นอกเหนือจากเครือข่ายโทรศัพท์ที่มีอยู่แล้ว โดยปกติการเชื่อมต่อ dial-up ความเร็วจะไม่เกิน 56 กิโลบิต/วินาทีโดยใช้โมเด็มที่ทำงานที่อัตราการส่งข้อมูลสูงสุด 56 กิโลบิต/วินาที (ดาวน์ลิงก์) และ 34 หรือ 48 kbit /วินาที (อัพลิงก์).

multilink dial-up

multilink dial-up ให้แบนด์วิดท์ที่เพิ่มขึ้นโดยการนำการเชื่อมต่อแบบ dial-up สองคู่สายหรือมากกว่า มาเชื่อมกัน (bonding) และปฏิบัติกับการบอนดิ้งนี้เหมือนกับเป็นช่องทางการเชื่อมต่อวงจรเดียว. ดังนั้น มันจึงต้องการสองชุดหรือมากกว่าของโมเด็ม, สายโทรศัพท์และบัญชี dial-up เช่นเดียวกับผู้ให้บริการอินเทอร์เน็ต ที่สนับสนุน Multilinking - และแน่นอนค่าใช้จ่ายและข้อมูลจะต้องเป็นสองเท่าหรือมากกว่าด้วย ตัวเลือกนี้ได้รับความนิยมในเวลาสั้น ๆ สำหรับผู้ใช้ระดับไฮเอนด์ ก่อนที่ ISDN, DSL และเทคโนโลยีอื่น ๆ จะพร้อมใช้ Diamondและผู้ขายอื่น ๆ ได้สร้างโมเด็มพิเศษเพื่อสนับสนุน Multilinking นี้.

เครือข่ายบริการดิจิทัลแบบบูรณาการ (ISDN)

Integrated Services Digital Network (ISDN) หรือบริการโทรศัพท์แบบสวิตช์ที่สามารถขนส่งเสียงและข้อมูลดิจิทัล เป็นหนึ่งในวิธีการที่เก่าแก่ที่สุดในการเข้าถึงอินเทอร์เน็ต. ISDN ถูกใช้สำหรับการประชุมทางเสียง/วิดีโอและการประยุกต์ใช้ข้อมูลบรอดแบนด์. ISDN เป็นที่นิยมมากในยุโรป แต่พบได้น้อยในอเมริกาเหนือ การใช้งานสูงสุดในปลายยุค 1990 ก่อนที่จะมี เทคโนโลยี DSL และเคเบิลโมเด็ม.

อัตราพื้นฐาน ISDN ที่รู้จักกันคือ ISDN-BRI, มีสอง"bearer"หรือ "B"แชนแนลที่ความเร็ว 64 กิโลบิต/วินาที ช่องทางเหล่านี้สามารถใช้แยกกันสำหรับเสียงหรือเซลล์ข้อมูลหรือบอนด์เข้าด้วยกันเพื่อให้บริการ 128 kbit/s หลายๆ ISDN-BRI สามารถผูกมัดร่วมกันเพื่อให้ได้อัตราการส่งข้อมูลสูงกว่า 128 กิโลบิต/วินาที อัตรา ISDN ประถมที่รู้จักกันเป็น ISDN-PRI มี 23 ช่อง bearer (64 kbit/s แต่ละ bearer ) ทำให้ได้อัตราการส่งข้อมูลรวม 1.5 Mbit / s (มาตรฐานสหรัฐ) สาย ISDN E1 (มาตรฐาน European) มี 30 ช่อง bearer ทำให้อัตราการส่งข้อมูลรวม 1.9 Mbit/s

วงจรเช่า

วงจรเช่าเป็นการกำหนดให้สายเคเบิลสายใดสายหนึ่งให้ผู้เช่าได้ใช้แต่เพียงผู้เดียว ผู้ใช้อาจเป็นผู้ให้บริการอินเทอร์เน็ต, ธุรกิจและองค์กรขนาดใหญ่อื่น ๆ ใช้ในการเชื่อมต่อระบบแลนหรือเครือข่ายมหาวิทยาลัยเข้ากับอินเทอร์เน็ต โดยใช้โครงสร้างพื้นฐานของเครือข่ายโทรศัพท์ทั่วไปหรือผู้ให้บริการอื่น ๆ สายเคเบิลดังกล่าว อาจเป็นลวดทองแดง, ใยแก้วนำแสงและวิทยุ, วงจรเช่าถูกนำมาใช้เพื่อให้การเข้าถึงอินเทอร์เน็ตโดยตรง

เทคโนโลยี T-carrier ให้บริการตั้งแต่ 1957 และให้อัตราการส่งข้อมูลที่หลากหลายจาก 56 และ 64 กิโลบิต/วินาที (DS0) ถึง 1.5 เมกะบิต/วินาที (T1 หรือ DS1) ถึง 45 Mbit/s (DS3 หรือ T3) สาย T1 ขนส่ง 24 ช่องเสียงหรือข้อมูล (24 DS0s) ดังนั้นลูกค้าอาจใช้บางช่องเป็นข้อมูลและที่เหลือเป็นเสียงหรือใช้ทั้ง 24 ช่องเป็นข้อมูลอย่างเดียว สาย DS3 (T3) ขนส่ง 28 ช่อง DS1 (T1). เศษของ T1 ยังมีให้บริการในรูปของทวีคูณ DS0 เพื่อให้อัตราการส่งข้อมูลระหว่าง 56 ถึง 1500 kbit/s. สาย T-carrier ต้องใช้อุปกรณ์ termination พิเศษที่อาจจะแยกออกจากหรือรวมอยู่กับเราเตอร์หรือสวิทช์หรืออาจจะหาซื้อหรือเช่าจาก ISP. ​​ในประเทศญี่ปุ่นมาตรฐานเทียบเท่าคือ J1/J3. ในทวีปยุโรปที่มีมาตรฐานแตกต่างกันเล็กน้อย, E-carrier. ให้ 32 ช่องผู้ใช้ (64 กิโลบิต/วินาที) บน E1 (2.0 Mbit/s) และ 512 ช่องผู้ใช้หรือ 16 E1s บน E3 (34.4 Mbit/s)

Synchronous Optical Networking (SONET ในสหรัฐอเมริกาและแคนาดา) และ Synchronous Digital Hierarchy (SDH, ในส่วนที่เหลือของโลก) เป็นโพรโทคอลมัลติเพล็กมาตรฐานที่ถูกใช้เพื่อขนส่งกระแสข้อมูลดิจิทัลอัตราบิตสูงผ่านใยแก้วนำแสงที่ใช้แสงเลเซอร์หรือแสงที่มีธรรมชาติเหมือนกันอย่างสูงจากไดโอดเปล่งแสง (LEDs). ที่อัตราการส่งต่ำ ข้อมูลยังสามารถถูกโอนผ่านทางอินเตอร์เฟซไฟฟ้าได้ หน่วยพื้นฐานของเฟรมคือ OC-3c (แสง) หรือ STS-3c (ไฟฟ้า) ซึ่งขนส่งที่ 155.520 Mbit/s ดังนั้น OC-3c จะขนส่งสาม OC-1 (51.84 Mbit /s) payloads ซึ่งแต่ละ payloads มีความจุมากพอที่จะรวม DS3 ได้เต็ม. อัตราการส่งข้อมูลที่สูงกว่าจะถูกส่งใน OC-3c ทวีคูณของสี่ ทำให้ได้ OC-12c (622.080 Mbit/s), OC-48C (2.488 Gbit/s), OC-192c (9.953 Gbit/s) และ OC-768c (39.813 Gbit/s) "C" ในตอนท้ายของ OC ย่อมาจาก "concatenated (ต่อกัน)" และแสดงกระแสข้อมูลเดียวแทนที่จะเป็นหลายกระแสข้อมูลที่ถูก multiplexed 1, 10, 40, และ 100 จิกะบิตอีเธอร์เน็ต (GbE, 10 GbE, 40 GbE และ 100 GbE) มาตรฐาน IEEE (802.3) ยอมให้ข้อมูลดิจิทัลถูกส่งผ่านสายทองแดงที่ระยะทางถึง 100 เมตรและผ่านใยแก้วนำแสงที่ระยะทางไป 40 กม.

การเข้าถึงอินเทอร์เน็ตเคเบิล

เคเบิลอินเทอร์เน็ตหรือการเข้าถึงด้วยเคเบิลโมเด็มให้การเข้าถึงอินเทอร์เน็ตผ่านสาย coaxial ใยแก้วไฮบริดที่เดิมพัฒนาขึ้นมาเพื่อขนส่งสัญญาณโทรทัศน์ สายทองแดงหรือใยแก้วนำแสงอาจเชื่อมต่อโหนดไปยังสถานที่ของลูกค้าที่จุดเชื่อมต่อที่รู้จักกันว่าเคเบิลดรอพ ในระบบเคเบิลโมเด็ม ทุกโหนดสำหรับสมาชิกเชื่อมต่อไปยังสำนักงานกลางของบริษัทเคเบิล ที่รู้จักกันว่าคือ "head end" แล้วบริษัทเคเบิลจะเชื่อมต่อกับอินเทอร์เน็ตโดยใช้ความหลากหลายของวิธีการ -. ปกติจะใช้สายเคเบิลใยแก้วนำแสงหรือดาวเทียมดิจิทัลและการส่งสัญญาณไมโครเวฟ. เหมือน DSL, เคเบิลบรอดแบนด์ให้การเชื่อมต่ออย่างต่อเนื่องกับผู้ให้บริการอินเทอร์เน็ต. ช่วงดาวน์โหลด, ทิศทางสู่ผู้ใช้, อัตราบิตสามารถมากสุดได้ถึง 400 Mbit/s สำหรับการเชื่อมต่อธุรกิจ, และ 100 Mbit/s สำหรับการบริการที่อยู่อาศัยในบางประเทศ. ช่วงอัปโหลด, ออกมาจากผู้ใช้, มีความเร็วตั้งแต่ 384 กิโลบิต/วินาทีจนถึง 20 Mbit/s. การเข้าถึงแบบเคเบิลบรอดแบนด์มีแนวโน้มที่จะให้บริการลูกค้าที่เป็นธุรกิจน้อยกว่าเพราะเคเบิลทีวีที่มีอยู่มีแนวโน้มที่จะให้บริการอาคารที่อยู่อาศัยมากกว่าและอาคารเพื่อการพาณิชย์ไม่ค่อยมีการเดินสายโคแอกเชียลภายในอาคาร. นอกจากนี้เนื่องจากสมาชิกเคเบิลบรอดแบนด์แชร์สายท้องถิ่นเดียวกัน, การสื่อสารอาจถูกดักไว้โดยสมาชิกที่อยู่ใกล้เคียง สายเคเบิลเครือข่ายให้รูปแบบการเข้ารหัสอย่างสม่ำเสมอสำหรับการเดินทางของข้อมูลไปและกลับจากลูกค้า แต่แผนการเหล่านี้อาจจะถูกขัดขวาง.

Digital Subscriber Line (DSL, ADSL, SDSL และ VDSL)

บริการ Digital Subscriber Line (DSL) ให้การเชื่อมต่อกับอินเทอร์เน็ตผ่านเครือข่ายโทรศัพท์ ซึ่งแตกต่างจาก dial-up, DSL สามารถทำงานได้โดยใช้สายโทรศัพท์เพียงคู่สายเดียวโดยไม่ได้ขัดขวางการใช้งานปกติของสายโทรศัพท์สำหรับการโทรโทรศัพท์เสียง. DSL ใช้ความถี่สูงในขณะที่ความถี่(เสียง)ต่ำจะถูกใช้สำหรับการสื่อสารโทรศัพท์ปกติ. โดยความถี่ต่ำจะถูกแยกออกมาด้วยตัวกรองที่ติดตั้งในสถานที่ของลูกค้า

DSL เดิมหมายถึง "digital subscriber loop" ในด้านการตลาดการสื่อสารโทรคมนาคม, คำว่า DSL เป็นที่เข้าใจอย่างกว้างขวางว่าหมายถึง Asymmetric Digital Subscriber Line (ADSL) เนื่องจากเป็นชนิดของ DSL ที่ถูกติดตั้งมากที่สุด การรับส่งข้อมูลในทิศทางให้กับลูกค้า (ดาวน์โหลด)ของการบริการ DSL สำหรับผู้บริโภคทั่วไปมักจะมีตั้งแต่ 256 กิโลบิต/วินาทีถึง 20 Mbit/s ทั้งนี้ขึ้นอยู่กับเทคโนโลยี DSL, สภาพสายและการดำเนินการของระดับบริการ. ใน ADSL, การรับส่งข้อมูลในทิศทางของผู้ให้บริการ (อัปโหลด) จะต่ำกว่าในทิศทางให้กับลูกค้า (ดาวน์โหลด) จึงเรียกว่าไม่สมมาตร. เทียบกับ symmetric digital subscriber line (SDSL) ดาวน์โหลดและอัปโหลดมีอัตราการส่งข้อมูลเท่ากัน.

Very-high-bit-rate digital subscriber line (VDSL หรือ VHDSL, ITU G.993.1) เป็นมาตรฐานของ DSL ที่ได้รับการอนุมัติในปี 2001 ที่มีอัตราการส่งข้อมูลถึง 52 Mbit/s ดาวน์โหลดและ 16 Mbit/s อัปโหลด บนสายทองแดง และสูงถึง 85 Mbit/s ทั้งดาวน์โหลดและอัปโหลดบนสายโคแอกเชียล. VDSL สามารถรองรับการใช้งานเช่นโทรทัศน์ความละเอียดสูงเช่นเดียวกับการให้บริการโทรศัพท์ (Voice over IP) และ การเข้าถึงอินเทอร์เน็ตโดยทั่วไปผ่านการเชื่อมต่อทางกายภาพคู่สายเดียว

VDSL2 (ITU-T G.993.2) เป็นรุ่นที่สองและเป็นการเพิ่มประสิทธิภาพของ VDSL. ได้รับการอนุมัติในเดือนกุมภาพันธ์ปี 2006 มันสามารถที่จะให้อัตราการส่งข้อมูลเกิน 100 Mbit/s พร้อมกันทั้งในทิศทางอัปโหลดและดาวน์โหลด แต่อัตราการส่งข้อมูลสูงสุดจะประสบความสำเร็จในช่วงประมาณ 300 เมตรและประสิทธิภาพจะลดทอนไปตามระยะทางและการลดทอนสัญญาณที่เพิ่มขึ้น

วงแหวน DSL

DSL Rings (DSLR) หรือ วงแหวน DSL ที่นำ DSL หลายวงจรมาผูกติดกัน คือโครงสร้างวงแหวนที่ใช้เทคโนโลยี DSL ผ่​​านสายโทรศัพท์ทองแดงหลายคู่สายที่มีอยู่มาผูกติดกันเพื่อให้มีอัตราการส่งข้อมูลสูงสุดถึง 400 Mbit/s.

ใยแก้วนำแสงไปถึงบ้าน

Fiber-to-the-home (FTTH) เป็นหนึ่งในสมาชิกของครอบครัว Fiber-to-the-x (FTTx) ได้แก่ Fiber-to-the-building (FTTB), Fiber-to-the-premises (FTTP ), Fiber-to-the-desk (FTTD), Fiber-to-the-curb (FTTC) และ Fiber-to-the-โหนด (FTTN). วิธีการเหล่านี้ทั้งหมดนำข้อมูลมาใกล้ชิดกับผู้ใช้ด้วยใยแก้วนำแสง ความแตกต่างระหว่างแต่ละวิธีการส่วนใหญ่ก็คือวิธีการที่จะทำอย่างไรจะนำใยแก้วนำแสงให้ใกล้ชิดกับผู้ใช้มากที่สุด วิธีการจัดส่งทั้งหมดเหล่านี้มีความคล้ายคลึงกับระบบไฮบริด fiber-coaxial (HFC) ที่ใช้เพื่อการเข้าถึงอินเทอร์เน็ตด้วยสายเคเบิล

ใยแก้วนำแสงสามารถให้อัตราการส่งข้อมูลที่สูงขึ้นมากในระยะทางที่ไกลกว่ามาก อินเทอร์เน็ตที่มีความจุสูงส่วนใหญ่และแบ็คโบนของเคเบิลทีวีจะใช้เทคโนโลยีใยแก้วนำแสง จากนั้นข้อมูลจะถูกเปลี่ยนไปใช้เทคโนโลยีอื่น ๆ (DSL, เคเบิลทีวี, โทรศัพท์บ้าน) สำหรับการส่งมอบสุดท้ายให้กับลูกค้า.

อินเทอร์เน็ตตามสายไฟ

อินเทอร์เน็ตตามสายไฟหรือที่เรียกว่า Broadband over power lines (BPL) ทำการขนส่งข้อมูลอินเทอร์เน็ตบนตัวนำไฟฟ้าที่ถูกใช้สำหรับการส่งกระแสไฟฟ้าด้วย เนื่องจากโครงสร้างพื้นฐานของสายไฟฟ้าที่ได้กระจายออกไปอย่างกว้างขวางอยู่แล้ว เทคโนโลยีนี้สามารถให้คนที่อยู่ในชนบทและในพื้นที่ประชากรอยู่อาศัยน้อยสามารถเข้าถึงอินเทอร์เน็ตด้วยค่าใช้จ่ายที่น้อยในแง่ของอุปกรณ์การส่ง, สายเคเบิลหรือสายไฟ อัตราการส่งข้อมูลจะไม่สมมาตรและมีความเร็วทั่วไปตั้งแต่ 256 กิโลบิต/วินาทีถึง 2.7 Mbit/s.

เพราะระบบเหล่านี้ใช้บางส่วนของคลื่นความถี่วิทยุที่ถูกจัดสรรให้กับบริการการสื่อสารแบบออกอากาศอื่น ๆ, การรบกวนระหว่างการบริการด้วยกันเป็นปัจจัยสำคัญในการใช้งานของระบบการเข้าถึงอินเทอร์เน็ตผ่านทางสายไฟ. มาตรฐาน IEEE P1901 ระบุว่าโพรโทคอลสายไฟทั้งหมดจะต้องตรวจสอบการใช้งานขนส่งกระแสไฟฟ้าที่ใช้อยู่และหลีกเลี่ยงการเข้าไปรบกวนกับงานนั้น

การเข้าถึงอินเทอร์เน็ตด้วยสายไฟได้มีการพัฒนาได้เร็วกว่าในยุโรปมากกว่าในสหรัฐเนื่องจากความแตกต่างทางประวัติศาสตร์ในปรัชญาการออกแบบระบบไฟฟ้า สัญญาณข้อมูลจะไม่สามารถผ่านหม้อแปลง Step-Down ที่ใช้อยู่ จึงต้องใช้ repeater มาติดตั้งในหม้อแปลงไฟฟ้​​าแต่ละตัว. ในสหรัฐอเมริกาหม้อแปลงให้บริการกลุ่มเล็ก ๆ ของบ้านหนึ่งหรือสองสามหลัง ในยุโรปมันเป็นเรื่องธรรมดามากสำหรับหม้อแปลงไฟฟ้​​าค่อนข้างใหญ่เพื่อให้บริการกลุ่มขนาดใหญ่ 10-100 บ้าน ดังนั้นเมืองสหรัฐฯโดยทั่วไปต้องใช้ repeater มากกว่าเมืองในยุโรปในขนาดเมืองที่เท่ากัน.

ATM และ Frame Relay

Asynchronous Transfer Mode (Asynchronous) และ Frame Relay เป็นมาตรฐานเครือข่ายบริเวณกว้างที่สามารถใช้เพื่อให้การเข้าถึงอินเทอร์เน็ตได้โดยตรงหรือเป็น building blocks ของเทคโนโลยีการเข้าถึงอื่น ๆ ตัวอย่างเช่นการใช้งานหลายๆ DSL ใช้เลเยอร์เอทีเอ็มบนชั้น bitstream ระดับต่ำเพื่อเปิดทางให้หลายเทคโนโลยีที่แตกต่างกันสามารถทำงานบนการเชื่อมโยงเดียวกันได้ ลูกค้าระบบแลนโดยทั่วไปจะถูกเชื่อมต่อกับสวิตช์ ATM หรือโหนด Frame Relay ด้วยวงจรเช่าที่มีอัตราการส่งข้อมูลที่มีความเร็วที่หลากหลาย

เนื่องจากการถือกำเนิดของ Ethernet บนใยแก้วนำแสง การใช้กันอย่างแพร่หลายของ MPLS, VPNs และบริการบรอดแบนด์เช่นเคเบิลโมเด็มและ DSL, ทำให้ ATM และ Frame Relay ไม่ได้มีบทบาทที่โดดเด่นอย่างที่เคย

การเข้าถึงบรอดแบนด์ไร้สาย

บรอดแบนด์ไร้สายจะถูกใช้เพื่อให้การเข้าถึงอินเทอร์เน็ตทั้งแบบอยู่กับที่และแบบเคลื่อนที่

ดาวเทียมบรอดแบนด์

การเข้าถึงอินเทอร์เน็ตดาวเทียมผ่าน VSAT ในกานา

ดาวเทียมสามารถให้การเข้าถึงอินเทอร์เน็ตแบบอยู่กับที่ แบบพกพาและแบบโทรศัพท์มือถือ มันเป็นหนึ่งในรูปแบบที่แพงที่สุดของการเข้าถึงอินเทอร์เน็ตความเร็วสูง แต่อาจจะเป็นทางเลือกเดียวที่มีอยู่ในพื้นที่ห่างไกล. ข้อมูลอัตราของดาวน์โหลดมีตั้งแต่ 2 กิโลบิต/วินาที ถึง 1 Gbit/s และของอัปโหลดมีตั้งแต่ 2 กิโลบิต/วินาทีถึง 10 Mbit/s การสื่อสารผ่านดาวเทียมมักจะต้องมีเส้นของสายตาที่ชัดเจน และจะไม่ทำงานได้ดีถ้าผ่านต้นไม้และพืชผักอื่น ๆ และจะได้รับผลกระทบจากความชื้น ฝนและหิมะ (เรียกว่า rain fade) และอาจจำเป็นต้องมีเสาอากาศทิศทางขนาดใหญ่พอสมควรและต้องเล็งให้ตรงที่สุด

ดาวเทียมในวงโคจร geostationary Earth orbit (GEO) ทำงานในตำแหน่งที่คงที่ที่ 35,786 กิโลเมตร (22,236 ไมล์) เหนือเส้นศูนย์สูตรของโลก แม้ที่ความเร็วของแสง (ประมาณ 300,000 กิโลเมตรต่อวินาทีหรือ 186,000 ไมล์ต่อวินาที) ก็จะใช้เวลาหนึ่งในสี่ของวินาทีสำหรับสัญญาณวิทยุในการเดินทางจากโลกไปยังดาวเทียมและกลับมา เมื่อเกิดความล่าช้าในการสวิตชิ่งและการเปลี่ยนเส้นทางอื่น ๆ ที่เพิ่มเข้ามาอีกทั้งความล่าช้าจะเป็นสองเท่าเพื่อให้สามารถส่งทั้งขาไปและขากลับ ทำให้ความล่าช้าทั้งหมดเป็นได้ถึง 0.75-1.25 วินาที ความล่าช้าแฝงนี้มีขนาดใหญ่เมื่อเทียบกับรูปแบบอื่น ๆ ของการเข้าถึงอินเทอร์เน็ตที่มีศักยภาพทั่วไปที่ช่วง 0.015-0.2 วินาทีเท่านั้น เวลาแฝงที่ยาวสามารถทำให้การใช้งานบางอย่างเช่นการประชุมทางวิดีโอ, Voice over IP, เกมหลายผู้เล่นและการควบคุมระยะไกลของอุปกรณ์ที่จำเป็นต้องมีการตอบสนองในเวลาจริงไม่สามารถทำได้ผ่านดาวเทียม. การปรับแต่งด้วย TCP และ เทคนิคการเร่งความเร็วของ TCP สามารถบรรเทาปัญหาเหล่านี้ได้บ้าง ดาวเทียม GEO ไม่ครอบคลุมบริเวณขั้วโลกของโลก. HughesNet และ Viasat เป็นระบบ GEO

ดาวเทียมในวงโคจรโลกต่ำ (Low Earth orbit (LEO) ต่ำกว่า 2,000 กิโลเมตรหรือ 1,243 ไมล์) และวงโคจรโลกกลาง (Medium earth orbit (MEO) ระหว่าง 2000 ถึง 35,786 กิโลเมตรหรือ 1,243 ถึง 22,236 ไมล์) มีความเหมือนกันน้อย, ดำเนินงานที่ระดับความสูงต่ำกว่าและจะไม่อยู่ในตำแหน่งที่คงที่เหนือแผ่นดิน ระดับความสูงที่ต่ำกว่าให้เวลาแฝงต่ำและให้การใช้งานอินเทอร์เน็ตแบบโต้ตอบเรียลไทม์มีความเป็นไปได้ ระบบ LEO รวม Globalstar และ Iridium. ดาวเทียม O3b Constellation นำเสนอเป็นระบบ MEO ที่มีความล่าช้า 125 ms. COMMStellation™ เป็นระบบ LEO วางแผนจะเปิดตัวในปี 2015 คาดว่าจะมีความล่าช้าจากเพียง 7 ms.

บรอดแบนด์เคลื่อนที่

บรอดแบนด์เคลื่อนที่เป็นศัพท์ทางการตลาดสำหรับการเข้าถึงอินเทอร์เน็ตไร้สายผ่านเสาโทรศัพท์มือถือไปยังเครื่องคอมพิวเตอร์, ไปโทรศัพท์มือถือ (เรียกว่า "เซลล์โฟน" ในอเมริกาเหนือและแอฟริกาใต้) และไปอุปกรณ์ดิจิทัลอื่น ๆ ที่ใช้โมเด็มแบบพกพา. บริการบางอย่างของโทรศัพท์มือถือช่วยให้อุปกรณ์มากกว่าหนึ่งสามารถเชื่อมต่อกับอินเทอร์เน็ตโดยใช้การเชื่อมต่อแบบเซลลูลาร์เซลล์เดียวโดยใช้กระบวนการที่เรียกว่า tethering โมเด็มอาจจะถูกสร้างไว้ในคอมพิวเตอร์แล็ปท็อป, ในแท็บเล็ต, ในโทรศัพท์มือถือและในอุปกรณ์อื่น ๆ หรืออาจเพิ่มเข้าไปในอุปกรณ์บางอย่างที่ใช้คาร์ดในเครื่องพีซี, โมเด็ม USB และที่ USB sticks หรือ dongles หรือโมเด็มไร้สายแยกส่วน

ทุก ๆ สิบปีเทคโนโลยีใหม่ของโทรศัพท์มือถือและโครงสร้างพื้นฐานที่เกี่ยวข้องกับการเปลี่ยนแปลงในธรรมชาติของพื้นฐานของการบริการ, เทคโนโลยีการส่งผ่านที่ไม่ย้อนกลับที่เข้ากันได้, จุดสูงสุดของอัตราความเร็วที่สูงขึ้น, คลื่นความถี่ใหม่, ช่องแบนด์วิดท์ที่กว้างขึ้นมีความพรอมใช้งานได้ การเปลี่ยนเหล่านี้จะเรียกว่า generation ครั้งแรกที่ให้บริการข้อมูลบนมือถือได้อยู่ในช่วงยุคที่สอง (2G)

Second generation (2G) from 1991:
Speeds in kbit/sdown and up
GSM CSD9.6 kbit/s
CDPDup to 19.2 kbit/s
GSM GPRS (2.5G)56 to 115 kbit/s
GSM EDGE (2.75G) up to 237 kbit/s
Third generation (3G) from 2001:
Speeds in Mbit/sdownup
UMTS W-CDMA0.4 Mbit/s
UMTS HSPA14.45.8
UMTS TDD16 Mbit/s
CDMA2000 1xRTT0.30.15
CDMA2000 EV-DO2.5–4.90.15–1.8
GSM EDGE-Evolution 1.60.5
Fourth generation (4G) from 2006:
Speeds in Mbit/sdownup
HSPA+21–6725.8–168
Mobile WiMAX (802.16)37–36517–376
LTE100–30050–75
LTE-Advanced: 
 • moving at higher speeds100 Mbit/s
 • not moving or moving at lower speedsup to 1000 Mbit/s
MBWA (802.20)80 Mbit/s

อัตราการส่งข้อมูลดาวน์โหลด (มาที่ผู้ใช้) และอัปโหลด (ไปยังอินเทอร์เน็ต) ดังกล่าวข้างต้นเป็นจุดสูงสุดหรืออัตราสูงสุดและผู้ใช้มักจะได้สัมผัสกับอัตราการส่งข้อมูลที่ต่ำกว่า

WiMAX ถูกพัฒนามาเพื่อส่งมอบบริการไร้สายอยู่กับที่เพิ่มแบบไร้สายเคลื่อนที่เข้ามาในปี 2005. CDPD, CDMA2000 EV-DO และ MBWA จะไม่ได้รับการพัฒนาอย่างจริงจังอีกต่อไป

ในปี 2011, 90% ของประชากรโลกอาศัยอยู่ในพื้นที่ที่ให้บริการ 2G, ในขณะที่ 45% อาศัยอยู่ในพื้นที่ที่มีบริการ 2G และ 3G

วายแมกซ์

WiMAX (Worldwide Interoperability for Microwave Access) คือชุดของการใช้งานร่วมกันของมาตรฐาน IEEE 802.16 ซึ่งเป็นครอบครัวของมาตรฐานเครือข่ายไร้สายที่ได้รับการรับรองโดย WiMAX Forum. WiMAX เปิดการใช้งาน "ส่งมอบกิโลเมตรสุดท้ายของการเข้าถึงบรอดแบนด์ไร้สายเพื่อเป็นทางเลือกแทนเคเบิลและ DSL". เดิม IEEE 802.16 มาตรฐานนี้ปัจจุบันเรียกว่า "WiMAX อยู่กับที่" ได้รับการตีพิมพ์ในปี 2001 และให้อัตราการส่งข้อมูล 30 ถึง 40 เมกะบิตต่อวินาที . การสนับสนุนการทำงานขณะเคลื่อนที่ถูกเพิ่มเข้ามาในปี 2005. ในปี 2011 ถูกปรับปรุงให้มีอัตราการส่งข้อมูลได้ถึง 1 Gbit/s สำหรับสถานีอยู่กับที่. WiMax เสนอระบบเครือข่ายในพื้นที่เมือง(แมน) มีรัศมีสัญญาณประมาณ 50 กิโลเมตร (30 ไมล์), ไกลกว่า Wi-Fi เครือข่ายแลนไร้สายทั่วไปที่มีระยะเพียง 30 เมตร (100 ฟุต) สัญญาณ WiMAX ยังมีประสิทธิภาพในการเจาะผนังอาคารมากกว่าของ Wi-Fi

ผู้ให้บริการอินเทอร์เน็ตไร้สาย

โลโก้ ไวไฟ

ผู้ให้บริการอินเทอร์เน็ตไร้สายมักจะใช้ระบบ ไวไฟ IEEE 802.11 ต้นทุนต่ำเพื่อเชื่อมโยงสถานที่ที่อยู่ห่างไกลเข้าด้วยกัน แต่อาจจะใช้ระบบสื่อสารทางวิทยุพลังงานสูงอื่น ๆ เพื่อเชื่อมโยงได้เช่นกัน

802.11b แบบดั้งเดิมเป็นบริการไวไฟรอบทิศทางที่ไม่มีใบอนุญาตที่ถูกออกแบบให้มีระยะบริการระหว่าง 100 และ 150 เมตร (300-500 ฟุต). โดยเน้นสัญญาณวิทยุโดยการใช้ 802.11b เสาอากาศทิศทางเดียวสามารถทำงานได้อย่างน่าเชื่อถือด้วยระยะทางหลายกิโลเมตร (ไมล์) แม้ว่าความต้องการเทคโนโลยีของเส้นสายตาถูกขัดขวางการเชื่อมต่อในพื้นที่ที่มีภูมิประเทศที่เป็นภูเขาหรือป่าทึบมากๆ นอกจากนั้น เมื่อเปรียบเทียบกับการเชื่อมโยงแบบใช้สาย, การเชื่อมต่อแบบไร้สายจะมีความเสี่ยงด้านการรักษาความปลอดภัย (ยกเว้นว่าจะใช้โพรโทคอลรักษาความปลอดภัยที่แข็งแกร่ง) อัตราการส่งข้อมูลจะช้าลงอย่างมีนัยสำคัญ (2-50 เท่า); และเครือข่ายยังมีเสถียรภาพน้อยลงอันเนื่องมาจากการรบกวนจากอุปกรณ์ไร้สายและจากเครือข่ายอื่น ๆ อีกทั้งปัญหาสภาพอากาศและปัญหาแนวเส้นสายตาอีกด้วย

การติดตั้งแบบไร้สายของ ISP ในพื้นที่ชนบทมักจะไม่ได้ทำในเชิงพาณิชย์และจะถูกแทนที่โดยการงานปะติดปะต่อกันของระบบที่สร้างขึ้นโดยการติดตั้งเสาอากาศของมือสมัครเล่นบนเสาวิทยุและหอคอย, ไซโลเก็บเกษตร, ต้นไม้สูงมากๆ หรือวัตถุอะไรก็ได้ที่มีความสูง ปัจจุบันมีบริษัท ที่ให้บริการนี้จำนวนของมาก

เทคโนโลยี Canopy ของโมโตโรล่าและเทคโนโลยีที่เป็นกรรมสิทธิ์เฉพาะอื่น ๆ นำเสนอการเข้าถึงแบบไร้สายไปยังตลาดในชนบทและพื้นที่อื่น ๆ ที่ยากที่จะเข้าถึงด้วยบริการ ไวไฟ หรือ วายแมกซ์

บริการแจกจ่ายหลายจุดท้องถิ่น

Local Multipoint Distribution Service (LMDS) เป็นdkiเข้าถึงเทคโนโลยีบรอดแบนด์ไร้สายที่ใช้สัญญาณไมโครเวฟในการดำเนินงานระหว่าง 26 GHz และ 29 GHz. เดิมถูกออกแบบมาสำหรับการส่งโทรทัศน์ดิจิทัล (DTV) มันถูกพิจารณาว่าเป็นเทคโนโลยีไร้สายอยู่กับที่, หนึ่งจุดไปหลายจุดสำหรับการใช้ในกิโลเมตรสุดท้าย อัตราข้อมูลอยู่ในช่วง 64 กิโลบิต/วินาทีถึง 155 Mbit/s. ระยะทางจะถูกจำกัดโดยทั่วไปที่ประมาณ 1.5 ไมล์ (2.4 กิโลเมตร) แต่สามารถเชื่อมโยงได้ถึง 5 ไมล์ (8 กิโลเมตร) จากสถานีฐานมีความเป็นไปได้ในบางสถานการณ์ .

LMDS ถูกพบว่ามีศักยภาพทั้งในด้านเทคโนโลยีและการพาณิชย์ต่ำกว่ามาตรฐาน LTE และ WiMAX

ใกล้เคียง

การเข้ารหัสทางประสาท การเข้าถึงอินเทอร์เน็ต การเข้าเมืองกับอาชญากรรม การเขียนโปรแกรมเชิงวัตถุ การเขียนโปรแกรมเชิงแข่งขัน การเข้าตีเจาะ (การสงคราม) การเขียนโปรแกรมคอมพิวเตอร์ การเข้ารหัส การเขียนโปรแกรมเชิงฟังก์ชัน การเขียน

แหล่งที่มา

WikiPedia: การเข้าถึงอินเทอร์เน็ต http://ec.europa.eu/information_society/eeurope/i2... http://www.broadband.gov/broadband_types.html http://broadbandmap.gov http://www.itu.int/ITU-D/ICTEYE/Reporting/DynamicR... http://www.itu.int/en/ITU-D/Statistics/Documents/s... http://www.alternet.org/story/22216/ https://www.google.com/publicdata/directory#!q=bro... https://web.archive.org/web/20140209141641/http://... https://web.archive.org/web/20170710054412/http://...