ทฤษฎีจำนวน ของ แฟกทอเรียล

แฟกทอเรียลมีการใช้งานหลายอย่างในทฤษฎีจำนวน โดยเฉพาะอย่างยิ่ง n! สามารถหารด้วยจำนวนเฉพาะทั้งหมดที่น้อยกว่าหรือเท่ากับ n ได้ลงตัว ผลสรุปที่ตามมาคือ n > 5 จะเป็นจำนวนประกอบก็ต่อเมื่อ

( n − 1 ) !   ≡   0 ( mod n ) {\displaystyle (n-1)!\ \equiv \ 0{\pmod {n}}}

ทฤษฎีของวิลสัน (Wilson's theorem) ได้กล่าวถึงผลสรุปที่เคร่งครัดมากกว่าดังนี้

( p − 1 ) !   ≡   − 1 ( mod p ) {\displaystyle (p-1)!\ \equiv \ -1{\pmod {p}}}

ก็ต่อเมื่อ p เป็นจำนวนเฉพาะ

อาเดรียง-มารี เลอฌ็องดร์ (Adrien-Marie Legendre) พบว่าการคูณของจำนวนเฉพาะ p ที่ปรากฏในการแยกตัวประกอบเฉพาะของ n! สามารถแสดงได้อย่างแม่นยำเป็น

∑ i = 1 ∞ ⌊ n p i ⌋ {\displaystyle \sum _{i=1}^{\infty }\left\lfloor {\frac {n}{p^{i}}}\right\rfloor }

ข้อเท็จจริงนี้มีพื้นฐานบนการนับจำนวนตัวประกอบ p ของจำนวนเต็มตั้งแต่ 1 ถึง n; จำนวนพหุคูณของ p ในจำนวนเต็มตั้งแต่ 1 ถึง n สามารถพิจารณาได้จากสูตร ⌊ n p ⌋ {\displaystyle \textstyle \left\lfloor {\frac {n}{p}}\right\rfloor } อย่างไรก็ตามสูตรนี้จะนับตัวประกอบ p เพียงครั้งเดียว ยังคงมีตัวประกอบจำนวน ⌊ n p 2 ⌋ {\displaystyle \textstyle \left\lfloor {\frac {n}{p^{2}}}\right\rfloor } ตัวของ p ที่จะต้องนับอีก และยังมีที่คล้ายกันอีกในกำลังสาม สี่ ห้า จนถึงอนันต์ ผลรวมดังกล่าวเป็นจำนวนจำกัดเนื่องจาก pi สามารถมีค่าได้แค่น้อยกว่าหรือเท่ากับ n สำหรับ i หลายค่าอย่างจำกัด และฟังก์ชันพื้นจะให้ผลลัพธ์เป็น 0 เมื่อใช้กับ pi > n

แฟกทอเรียลที่เป็นจำนวนเฉพาะด้วยมีจำนวนเดียวคือ 2 แต่ก็มีจำนวนเฉพาะจำนวนมากที่อยู่ในรูปแบบ n! ± 1 เรียกว่าจำนวนเฉพาะเชิงแฟกทอเรียล (factorial prime)

แฟกทอเรียลที่มากกว่า 0! และ 1! เป็นจำนวนคู่ทั้งหมด เพราะว่าเป็นพหุคูณของ 2 นอกจากนี้แฟกทอเรียลที่มากกว่า 5! ก็เป็นพหุคูณของ 10 (และทำให้มีศูนย์ลงท้ายในหลักสุดท้ายเป็นต้นไป) เนื่องจากเป็นพหุคูณของ 5 กับ 2

อนุกรมที่มีแต่ละพจน์เป็นส่วนกลับของแฟกทอเรียล ทำให้เกิดอนุกรมลู่เข้าและมีค่าเท่ากับ e

∑ n = 0 ∞ 1 n ! = 1 1 + 1 1 + 1 2 + 1 6 + 1 24 + 1 120 + … = e {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n!}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{6}}+{\frac {1}{24}}+{\frac {1}{120}}+\ldots =e}