การประยุกต์ ของ แฟกทอเรียล

แม้ว่าฟังก์ชันแฟกทอเรียลมีที่มาจากคณิตศาสตร์เชิงการจัด แต่สูตรที่เกี่ยวข้องกับแฟกทอเรียลก็ปรากฏในคณิตศาสตร์หลายสาขา

  • การเรียงสับเปลี่ยน (permutation) โดยพื้นฐานคือการเรียงลำดับวัตถุ n สิ่งที่แตกต่างกัน ซึ่งสามารถทำได้ n! วิธี
  • บ่อยครั้งที่แฟกทอเรียลปรากฏเป็นตัวส่วนในสูตรเพื่ออธิบายว่า การเรียงลำดับของวัตถุไม่มีความสำคัญและถูกเพิกเฉย ตัวอย่างตามแบบฉบับเช่น การจัดหมู่ (combination) วัตถุ k สิ่งจากเซตของวัตถุ n สิ่ง เราอาจจัดหมู่โดยการเรียงสับเปลี่ยนวัตถุ k สิ่ง หมายความว่าเลือกวัตถุสิ่งหนึ่งออกจากเซตทีละครั้งเป็นจำนวน k ครั้ง กระทั่งได้จำนวนวิธีรวมเท่ากับ
n k _ = n ( n − 1 ) ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle n^{\underline {k}}=n(n-1)(n-2)\cdots (n-k+1)} อย่างไรก็ตาม การเรียงลำดับของวัตถุที่ถูกเลือกในการจัดหมู่ไม่มีความสำคัญ และเนื่องจากการเรียงลำดับวัตถุ k สิ่งสามารถกระทำได้แตกต่างกัน k! วิธี เพราะฉะนั้นจำนวนวิธีของการจัดหมู่วัตถุ k สิ่งจากเซตของวัตถุ n สิ่งที่ถูกต้องจึงควรเท่ากับ n k _ k ! = n ( n − 1 ) ( n − 2 ) ⋯ ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) ⋯ 1 {\displaystyle {\frac {n^{\underline {k}}}{k!}}={\frac {n(n-1)(n-2)\cdots (n-k+1)}{k(k-1)(k-2)\cdots 1}}} ผลลัพธ์ดังกล่าวเป็นที่รู้จักในชื่อสัมประสิทธิ์ทวินาม ( n k ) {\displaystyle {\tbinom {n}{k}}} เพราะว่ามันเป็นสัมประสิทธิ์ของพจน์ Xk ในการกระจาย (1 + X)n
  • แฟกทอเรียลปรากฏในพีชคณิตด้วยเหตุผลหลายประการ ตัวอย่างเช่นสัมประสิทธิ์ของสูตรทวินามดังที่กล่าวแล้ว หรือการเฉลี่ยบนการเรียงสับเปลี่ยนเพื่อการทำให้สมมาตร (symmetrization) ของการดำเนินการเฉพาะอย่าง
  • แฟกทอเรียลก็มีใช้ในแคลคูลัส ตัวอย่างเช่นตัวส่วนของพจน์ในอนุกรมเทย์เลอร์ (Taylor series) เพื่อชดเชยข้อเท็จจริงโดยพื้นฐานว่าอนุพันธ์ชั้นที่ n ของ xn คือ n!
  • แฟกทอเรียลก็มีใช้อย่างกว้างขวางในทฤษฎีความน่าจะเป็น
  • แฟกทอเรียลมีประโยชน์ทำให้การจัดดำเนินการนิพจน์สะดวกขึ้น ตัวอย่างเช่นจำนวนวิธีของการเรียงสับเปลี่ยนของวัตถุ k สิ่งจากวัตถุ n สิ่ง สามารถเขียนได้เป็น
n k _ = n ! ( n − k ) ! {\displaystyle n^{\underline {k}}={\frac {n!}{(n-k)!}}} มันอาจถูกใช้เพื่อพิสูจน์สมบัติสมมาตรของสัมประสิทธิ์ทวินาม ในกรณีที่ไม่มีประสิทธิภาพเพียงพอที่จะคำนวณจำนวนเช่นนั้นได้ ( n k ) = n k _ k ! = n ! ( n − k ) ! k ! = n n − k _ ( n − k ) ! = ( n n − k ) {\displaystyle {\binom {n}{k}}={\frac {n^{\underline {k}}}{k!}}={\frac {n!}{(n-k)!k!}}={\frac {n^{\underline {n-k}}}{(n-k)!}}={\binom {n}{n-k}}}