การขยายแฟกทอเรียลไปยังอาร์กิวเมนต์ที่ไม่เป็นจำนวนเต็ม ของ แฟกทอเรียล

ฟังก์ชันแกมมาและฟังก์ชันพาย

ดูบทความหลักที่: ฟังก์ชันแกมมา
ฟังก์ชันแฟกทอเรียลที่วางนัยทั่วไปบนจำนวนจริงทุกจำนวนยกเว้นจำนวนเต็มลบ ตัวอย่าง 0! = 1! = 1, (−0.5)! = √π, (0.5)! = √π/2

นอกเหนือจากจำนวนเต็มที่ไม่เป็นลบแล้ว ฟังก์ชันแฟกทอเรียลสามารถนิยามให้กับค่าอื่นที่ไม่เป็นจำนวนเต็มได้ แต่การทำเช่นนี้จำเป็นต้องใช้เครื่องเครื่องมือขั้นสูงจากคณิตวิเคราะห์ ฟังก์ชันอันหนึ่งที่ "เติมเต็ม" ค่าต่าง ๆ ของแฟกทอเรียล (แต่มีค่าเลื่อนไป 1 ในอาร์กิวเมนต์) เรียกว่าฟังก์ชันแกมมา (Gamma function) เขียนแทนด้วย Γ(z) ซึ่งนิยามบนจำนวนเชิงซ้อน z ทุกจำนวนยกเว้นจำนวนเต็มลบ และส่วนจริงของ z เป็นจำนวนบวก ดังนี้

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t {\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}e^{-t}\,\mathrm {d} t}

ความสัมพันธ์ระหว่างฟังก์ชันแกมมากับแฟกทอเรียลเมื่อ n เป็นจำนวนธรรมชาติ เป็นดังนี้

n ! = Γ ( n + 1 ) {\displaystyle n!=\Gamma (n+1)\,}

สูตรดั้งเดิมของออยเลอร์สำหรับนิยามฟังก์ชันแกมมาคือ

Γ ( z ) = lim n → ∞ n z n ! ∏ k = 0 n ( z + k ) {\displaystyle \Gamma (z)=\lim _{n\to \infty }{\frac {n^{z}n!}{\displaystyle \prod _{k=0}^{n}(z+k)}}}

ยังมีสัญกรณ์อีกอย่างหนึ่งซึ่งเกาส์เป็นผู้คิดค้นและบางครั้งก็ถูกใช้เช่นกัน นั่นคือ ฟังก์ชันพาย (Pi function) เขียนแทนด้วย Π(z) นิยามไว้สำหรับจำนวนจริง z ที่ไม่น้อยกว่า 0 ดังนี้

Π ( z ) = ∫ 0 ∞ t z e − t d t {\displaystyle \Pi (z)=\int _{0}^{\infty }t^{z}e^{-t}\,\mathrm {d} t}

หากเทียบกับฟังก์ชันแกมมาจะได้ว่า

Π ( z ) = Γ ( z + 1 ) {\displaystyle \Pi (z)=\Gamma (z+1)\,}

ฟังก์ชันพายเป็นการขยายแนวคิดแฟกทอเรียลอย่างแท้จริงดังนี้

Π ( n ) = n !  for  n ∈ N {\displaystyle \Pi (n)=n!{\text{ for }}n\in \mathbf {N} \,}

ยิ่งไปกว่านี้ ฟังก์ชันพายมีการเวียนเกิดเหมือนกับแฟกทอเรียล แต่ใช้กับจำนวนเชิงซ้อน z ทุกจำนวนที่นิยาม

Π ( z ) = z Π ( z − 1 ) {\displaystyle \Pi (z)=z\Pi (z-1)\,}

โดยข้อเท็จจริงความสัมพันธ์เวียนเกิดไม่มีอีกต่อไปแล้ว เว้นแต่ในสมการเชิงฟังก์ชัน เมื่อแสดงในพจน์ของฟังก์ชันแกมมา สมการดังกล่าวจะเปลี่ยนเป็น

Γ ( n + 1 ) = n Γ ( n ) {\displaystyle \Gamma (n+1)=n\Gamma (n)\,}

เนื่องจากแฟกทอเรียลถูกขยายโดยฟังก์ชันพาย สำหรับจำนวนเชิงซ้อน z ทุกจำนวนที่นิยาม เราจึงสามารถเขียนว่า

z ! = Π ( z ) {\displaystyle z!=\Pi (z)\,}

ค่าของฟังก์ชันเหล่านี้ที่จำนวนเต็มครึ่ง (half-integer) สามารถพิจารณาได้จากสูตรต่อไปนี้ โดยพื้นฐานเราทราบว่า

Γ ( 1 2 ) = ( − 1 2 ) ! = Π ( − 1 2 ) = π {\displaystyle \Gamma \left({\frac {1}{2}}\right)=\left(-{\frac {1}{2}}\right)!=\Pi \left(-{\frac {1}{2}}\right)={\sqrt {\pi }}}

เมื่อ n เป็นจำนวนธรรมชาติ จะได้สูตร

Γ ( 1 2 + n ) = ( − 1 2 + n ) ! = Π ( − 1 2 + n ) = π ∏ k = 1 n 2 k − 1 2 = ( 2 n ) ! 4 n n ! π = ( 2 n − 1 ) ! 2 2 n − 1 ( n − 1 ) ! π {\displaystyle \Gamma \left({\frac {1}{2}}+n\right)=\left(-{\frac {1}{2}}+n\right)!=\Pi \left(-{\frac {1}{2}}+n\right)={\sqrt {\pi }}\prod _{k=1}^{n}{2k-1 \over 2}={(2n)! \over 4^{n}n!}{\sqrt {\pi }}={(2n-1)! \over 2^{2n-1}(n-1)!}{\sqrt {\pi }}}

ตัวอย่าง

Γ ( 4.5 ) = 3.5 ! = Π ( 3.5 ) = 1 2 ⋅ 3 2 ⋅ 5 2 ⋅ 7 2 π = 8 ! 4 4 4 ! π = 7 ! 2 7 3 ! π = 105 16 π ≈ 11.63 {\displaystyle \Gamma \left(4.5\right)=3.5!=\Pi \left(3.5\right)={1 \over 2}\cdot {3 \over 2}\cdot {5 \over 2}\cdot {7 \over 2}{\sqrt {\pi }}={8! \over 4^{4}4!}{\sqrt {\pi }}={7! \over 2^{7}3!}{\sqrt {\pi }}={105 \over 16}{\sqrt {\pi }}\approx 11.63}

และอีกสูตรหนึ่ง

Γ ( 1 2 − n ) = ( − 1 2 − n ) ! = Π ( − 1 2 − n ) = π ∏ k = 1 n 2 1 − 2 k = ( − 4 ) n n ! ( 2 n ) ! π {\displaystyle \Gamma \left({\frac {1}{2}}-n\right)=\left(-{\frac {1}{2}}-n\right)!=\Pi \left(-{\frac {1}{2}}-n\right)={\sqrt {\pi }}\prod _{k=1}^{n}{2 \over 1-2k}={(-4)^{n}n! \over (2n)!}{\sqrt {\pi }}}

ตัวอย่าง

Γ ( − 2.5 ) = ( − 3.5 ) ! = Π ( − 3.5 ) = 2 − 1 ⋅ 2 − 3 ⋅ 2 − 5 π = ( − 4 ) 3 3 ! 6 ! π = − 8 15 π ≈ − 0.9453 {\displaystyle \Gamma \left(-2.5\right)=(-3.5)!=\Pi \left(-3.5\right)={2 \over -1}\cdot {2 \over -3}\cdot {2 \over -5}{\sqrt {\pi }}={(-4)^{3}3! \over 6!}{\sqrt {\pi }}=-{8 \over 15}{\sqrt {\pi }}\approx -0.9453}

ฟังก์ชันพายไม่ได้เป็นเพียงฟังก์ชันเดียวที่ขยายแฟกทอเรียล ไปเป็นฟังก์ชันสำหรับจำนวนเชิงซ้อนเกือบทุกจำนวน และไม่ได้เป็นเพียงฟังก์ชันเดียวที่เป็นฟังก์ชันวิเคราะห์ (analytic function) เมื่อใดก็ตามที่มันถูกนิยาม แต่ไม่ว่าด้วยเหตุผลอันใด ฟังก์ชันพายมักเป็นตัวแทนโดยปริยายเมื่อต้องการหาค่าแฟกทอเรียลของจำนวนเชิงซ้อน ตัวอย่างเช่น ทฤษฎีบทบอร์-โมลเลอรัประบุว่า ฟังก์ชันแกมมาเป็นฟังก์ชันเดียวที่รับค่า 1 แล้วให้ผลลัพธ์เป็น 1, สอดคล้องกับสมการเชิงฟังก์ชัน Γ(n + 1) = nΓ(n), เป็นฟังก์ชันมีโรมอร์ฟิก (meromorphic function) บนจำนวนเชิงซ้อน, และเป็นฟังก์ชันคอนเวกซ์เชิงลอการิทึม (logarithmically convex function) บนแกนจำนวนจริงบวก เงื่อนไขที่คล้ายกันนี้ก็ปรากฏในฟังก์ชันพาย โดยเปลี่ยนสมการเชิงฟังก์ชันเป็น Π(n) = nΠ(n − 1)

อย่างไรก็ตาม ก็ยังมีฟังก์ชันเชิงซ้อนอื่นที่เรียบง่ายกว่าฟังก์ชันวิเคราะห์และสอดแทรกแฟกทอเรียลเข้าไป ตัวอย่างเช่น "ฟังก์ชันแกมมา" ของฌัก อาดามาร์ (Jacques Hadamard) ต่างจากฟังก์ชันแกมมาปรกติตรงที่มันเป็นฟังก์ชันทั่ว (entire function) [5][6]

ออยเลอร์ยังได้สร้างสูตรสำหรับการประมาณค่าด้วยผลคูณลู่เข้าสำหรับแฟกทอเรียลที่ไม่ใช่จำนวนเต็ม ซึ่งเทียบเท่ากับสูตรของฟังก์ชันแกมมาที่ได้กล่าวไว้แล้ว

n ! = Π ( n ) = ∏ k = 1 ∞ ( k + 1 k ) n k n + k = [ ( 2 1 ) n 1 n + 1 ] [ ( 3 2 ) n 2 n + 2 ] [ ( 4 3 ) n 3 n + 3 ] ⋯ {\displaystyle {\begin{aligned}n!=\Pi (n)&=\prod _{k=1}^{\infty }\left({\frac {k+1}{k}}\right)^{n}\!\!{\frac {k}{n+k}}\\&=\left[\left({\frac {2}{1}}\right)^{n}{\frac {1}{n+1}}\right]\left[\left({\frac {3}{2}}\right)^{n}{\frac {2}{n+2}}\right]\left[\left({\frac {4}{3}}\right)^{n}{\frac {3}{n+3}}\right]\cdots \end{aligned}}}

อย่างไรก็ดี สูตรนี้ไม่ได้ให้วิธีการคำนวณเชิงปฏิบัติของฟังก์ชันพายหรือฟังก์ชันแกมมา เนื่องด้วยอัตราการลู่เข้าของมันนั้นช้า

การประยุกต์ใช้ฟังก์ชันแกมมา

ปริมาตรของทรงกลม n มิติที่มีรัศมี R หน่วย คำนวณได้จากสูตร

V n = π n / 2 Γ ( ( n / 2 ) + 1 ) R n {\displaystyle V_{n}={\frac {\pi ^{n/2}}{\Gamma ((n/2)+1)}}R^{n}}