ความปลอดภัยและอุบัติเหตุ ของ โรงไฟฟ้านิวเคลียร์

มีแลกเปลี่ยนที่จะทำระหว่างความปลอดภัย คุณสมบัติทางเศรษฐกิจและทางเทคนิคของการออกแบบเครื่องปฏิกรณ์ที่แตกต่างกันสำหรับการใช้งานโดยเฉพาะ ในอดีตการตัดสินใจเหล่านี้มักจะถูกทำในภาคเอกชนโดยนักวิทยาศาสตร์ ผู้กำกับดูแลและวิศวกร[ต้องการอ้างอิง] แต่สิ่งนี้อาจได้รับการพิจารณาว่าเป็นปัญหา และตั้งแต่ เชอร์โนบิล และ เกาะทรีไมล์ หลายคนที่เกี่ยวข้องตอนนี้ได้พิจารณาถึงความยินยอมในการแจ้งล่วงหน้าและคุณธรรมที่จะเป็นข้อพิจารณาเบื้องต้นอย่างอิสระ[18]

ในหนังสือของเขา "อุบัติเหตุปกติ" นายชาร์ลส์ Perrow กล่าวว่าความล้มเหลวหลายครั้งและที่ไม่ได้คาดคิดถูกสร้างขึ้นเข้ามาในความซับซ้อนของสังคมและระบบเครื่องปฏิกรณ์นิวเคลียร์ที่มัดกันแน่น อุบัติเหตุดังกล่าวไม่สามารถหลีกเลี่ยงได้และไม่ได้ถูกออกแบบเอาไว้[19] ทีมสหวิทยาการจากเอ็มไอทีได้มีการประมาณการว่าถ้าให้การเจริญเติบโตที่คาดไว้ของพลังงานนิวเคลียร์จากปี 2005 - 2055 อย่างน้อยสี่อุบัติเหตุนิวเคลียร์ร้ายแรงคาดว่าจะเกิดขึ้นในช่วงนั้น[20][21] อย่างไรก็ตามการศึกษาของเอ็มไอทีไม่ได้คำนึงถึงการปรับปรุงหลายอย่างในด้านความปลอดภัยตั้งแต่ปี 1970[22][23] นับถึงวันนี้ ได้มีอุบัติเหตุร้ายแรง (แกนเสียหาย) เกิดขึ้น 5 ครั้งในโลกตั้งแต่ปี 1970 (หนึ่งที่เกาะสามไมล์ไอส์แลนด์ในปี 1979 สองที่เชอร์โนบิลในปี 1986 และสามที่ฟูกูชิม่า-Daiichi ในปี 2011) สอดคล้องกับจุดเริ่มต้นของการดำเนินงานของเครื่องปฏิกรณ์ generation II สิ่งนี้นำไปสู่​​ค่าเฉลี่ยของอุบัติเหตุร้ายแรงที่เกิดขึ้นหนึ่งครั้งทุก ๆ แปดปีทั่วโลก[24]

ความซับซ้อน

โรงไฟฟ้านิวเคลียร์คือบางส่วนของระบบพลังงานที่ทันสมัยและซับซ้อนที่สุดเท่าที่เคยออกแบบ[25] ระบบที่ซับซ้อนใด ๆ ไม่ว่าจะถูกออกแบบและถูกสรรสร้างได้ดีสักเพียงไร ก็ไม่สามารถจะบอกได้ว่ามันจะไม่มีความล้มเหลว[24] นักข่าวและนักประพันธ์อาวุโส สเตฟานี Cooke แย้งว่า:

ตัวเครื่องปฏิกรณ์เองเป็นเครื่องที่ซับซ้อนอย่างยิ่งที่มีหลายสิ่งที่อาจผิดพลาดได้ทุกเมื่อ เมื่อเกิดขึ้นที่เกาะทรีไมล์ในปี 1979 ความผิดพลาดอื่น ๆ ในโลกนิวเคลียร์ก็เริ่มขึ้น ความผิดพลาดอันหนึ่งก็นำไปสู่​​ความผิดพลาดอีกอันหนึ่ง แล้วเกิดขึ้นต่อ ๆ กันไปเรื่อย ๆ จนกระทั่งแกนของตัวเครื่องปฏิกรณ์เองเริ่มที่จะละลาย และแม้แต่วิศวกรนิวเคลียร์ที่ผ่านการฝึกอบรมมากที่สุดของโลกก็ไม่รู้วิธีการตอบสนอง อุบัติเหตุที่เกิดขึ้นเผยให้เห็นข้อบกพร่องอย่างร้ายแรงในระบบที่ถูกสร้างขึ้นมาให้ปกป้องสุขภาพและความปลอดภัยของประชาชน[26]

อุบัติเหตุนิวเคลียร์เกาะทรีไมล์ในปี 1979 สร้างแรงบันดาลใจให้กับ Perrow ในหนังสือ 'อุบัติเหตุปกติ' ในหนังสือเล่มนี้อุบัติเหตุนิวเคลียร์ได้เกิดขึ้น เป็นผลมาจากการทำงานร่วมกันที่ไม่คาดคิดของความล้มเหลวหลายอย่างของระบบที่ซับซ้อน อุบัติเหตุครั้งนั้นเป็นตัวอย่างหนึ่งของการเกิดอุบัติเหตุตามปกติเพราะมันเป็นสิ่งที่ "ที่ไม่คาดคิด เข้าใจยาก ไม่สามารถควบคุมได้และหลีกเลี่ยงก็ไม่ได้"[27]

Perrow สรุปว่าความล้มเหลวที่เกาะทรีไมล์เป็นผลมาจากความซับซ้อนอันยิ่งใหญ่ของระบบ เขาตระหนักว่า ระบบความเสี่ยงสูงที่ทันสมัย​​เช่นนั้นมีแนวโน้มที่จะล้มเหลวไม่ว่าพวกมันจะได้รับการจัดการดีอย่างไรก็ตาม มันหลีกเลี่ยงไม่ได้ที่พวกเขาในที่สุดก็จะได้รับสิ่งที่เขาเรียก 'อุบัติเหตุปกติ' ดังนั้น เขาแนะนำว่าเราอาจจะคิดออกแบบใหม่จะดีกว่า หรือถ้าเป็นไปไม่ได้ ก็ละทิ้งเทคโนโลยีดังกล่าวไปทั้งหมด[28]

ปัญหาพื้นฐานที่เอื้อต่อความซับซ้อนของระบบไฟฟ้านิวเคลียร์คืออายุการใช้งานที่ยาวนานมาก ๆ ของมัน ระยะเวลาตั้งแต่เริ่มต้นของการก่อสร้างสถานีพลังงานนิวเคลียร์เชิงพาณิชย์จนถึงการกำจัดที่ปลอดภัยของกากกัมมันตรังสีครั้งสุดท้ายของมันอาจกินเวลาถึง 100-150 ปี[25]

โหมดความล้มเหลวของโรงไฟฟ้านิวเคลียร์

มีความกังวลว่าการรวมกันของข้อผิดพลาดของมนุษย์และของเครื่องกลที่นิวเคลียร์ยูทิลิตื้อาจทำให้เกิดอันตรายที่สำคัญกับผู้คนและสิ่งแวดล้อม[29]:

การดำเนินงานกับเครื่องปฏิกรณ์นิวเคลียร์ประกอบด้วยปริมาณขนาดใหญ่ของผลิตภัณฑ์ฟิชชันที่ปนเปื้อนกัมมันตรังสีซึ่ง ถ้ากระจายออกไป สามารถก่อให้เกิดอันตรายจากรังสีโดยตรง ปนเปื้อนในดินและพืชผัก และถูกบริโภคโดยมนุษย์และสัตว์ การสัมผัสของมนุษย์ในระดับที่สูงพอสามารถทำให้เกิดทั้งการเจ็บป่วยและความตายในระยะสั้นและการเสียชีวิตในระยะยาวจากโรคมะเร็งและโรคอื่น ๆ[30].

มันเป็นไปไม่ได้สำหรับเครื่องปฏิกรณ์นิวเคลียร์เชิงพาณิชย์ที่จะระเบิดเหมือนกับระเบิดนิวเคลียร์เนื่องจากเชื้อเพลิงที่ไม่เคยมีสมรรถนะเพียงพอสำหรับทำให้เกิดขึ้นอย่างนั้น[31]

เครื่องปฏิกรณ์นิวเคลียร์สามารถล้มเหลวได้ในหลายวิธี ความไม่แน่นอนของวัสดุนิวเคลียร์อาจสร้างพฤติกรรมที่ไม่คาดคิด มันอาจส่งผลให้พลังงานกระจัดกระจายออกนอกลู่นอกทางไม่สามารถควบคุมได้ ปกติ ระบบหล่อเย็นในเตาปฏิกรณ์ถุกออกแบบเพื่อให้สามารถที่จะจัดการกับความร้อนส่วนเกินนี้ อย่างไรก็ตาม เตาปฏิกรณ์ยังอาจประสบอุบัติเหตุจากการสูญเสียของน้ำหล่อเย็น ทำให้เชื้อเพลิงละลายหรือทำให้ถังบรรจุเชื้อเพลิงร้อนมากเกินไปจนละลาย เหตุการณ์นี้เรียกว่านิวเคลียร์หลอมละลาย(อังกฤษ: nuclear meltdown)

หลังจากปิดตัวลง บางเวลาเครื่องปฏิกรณ์ยังคงต้องการพลังงานจากภายนอกเพื่อให้พลังงานกับระบบหล่อเย็น โดยปกติพลังงานนี้ถูกจัดให้โดยกริด (ไฟฟ้า) ที่โรงงานถูกเชื่อมต่อด้วย หรือโดยเครื่องกำเนิดไฟฟ้าดีเซลฉุกเฉิน ความล้มเหลวที่จะให้พลังงานสำหรับระบบหล่อเย็น อย่างที่เกิดขึ้นใน Fukushima I สามารถก่อให้เกิดอุบัติเหตุร้ายแรงได้

กฎความปลอดภัยนิวเคลียร์ในสหรัฐอเมริกา "ไม่ให้น้ำหนักเพียงพอกับความเสี่ยงของเหตุการณ์สักครั้งเดียวที่จะทำการปลดกระแสไฟฟ้าออกจากกริดและจากเครื่องกำเนิดไฟฟ้าฉุกเฉิน อย่างที่แผ่นดินไหวและสึนามิได้ทำเมื่อเร็ว ๆ นี้ในประเทศญี่ปุ่น" เจ้าหน้าที่กำกับกิจการพลังงานกล่าวในเดือนมิถุนายน 2011[32]

ภาวะเสี่ยงสูงของโรงไฟฟ้านิวเคลียร์ที่จะถูกโจมตี

เครื่องปฏิกรณ์นิวเคลียร์กลายเป็นเป้าหมายที่นิยมในช่วงความขัดแย้งทางทหารและ ตลอดสามทศวรรษที่ผ่านมา ได้ถูกโจมตีซ้ำแล้วซ้ำอีกในระหว่างการโจมตีทางอากาศ การเข้าครอบครอง การรุกรานและการรณรงค์[33]:

  • ในเดือนกันยายนปี 1980 อิหร่านโจมตีด้วยระเบิดที่ศูนย์นิวเคลียร์ Al Tuwaitha ในอิรักในปฏิบัติการการ Operation Scorch Sword
  • ในเดือนมิถุนายนปี 1981 การโจมตีทางอากาศของอิสราเอลได้ทำลายสถานที่วิจัยนิวเคลียร์ Osirak ของอิรักอย่างสมบูรณ์
  • ระหว่างปี 1984 และปี 1987 อิรักโจมตีด้วยระเบิดที่โรงงานนิวเคลียร์ Bushehr ของอิหร่านหกครั้ง
  • วันที่ 8 มกราคม 1982 Umkhonto we Sizwe ปีกติดอาวุธของ ANC ได้โจมตีโรงไฟฟ้านิวเคลียร์ Koeberg ของแอฟริกาใต้ในขณะที่มันยังคงอยู่ระหว่างการก่อสร้าง
  • ในปี 1991 สหรัฐฯทิ้งระเบิดสามเครื่องปฏิกรณ์นิวเคลียร์และห้องนักบินตกแต่งในอิรัก
  • ในปี 1991 อิรักยิงขีปนาวุธสกั๊ดเข้าที่โรงไฟฟ้านิวเคลียร์ Dimona ของอิสราเอล
  • ในเดือนกันยายนปี 2007 อิสราเอลทิ้งระเบิดเข้าที่เครื่องปฏิกรณ์ของซีเรียที่อยู่ระหว่างการก่อสร้าง[33]

ในสหรัฐอเมริกา โรงงานจะถูกล้อมรอบด้วยรั้วสูงสองแถวซึ่งมีการเฝ้าดูด้วยระบบอิเล็กทรอนิกส์ บริเวณโรงงานมีการลาดตระเวนโดยยามติดอาวุธจำนวนมาก[34] เกณฑ์ "การออกแบบการคุกคามพื้นฐาน" ของ NRC สำหรับโรงงานจะถูกเก็บเป็นความลับและขนาดของแรงโจมตีที่โรงงานสามารถป้องกันได้ไม่เป็นที่รู้จัก อย่างไรก็ตาม เพื่อที่จะ scram (ปิดฉุกเฉิน) โรงงานจะใช้เวลาน้อยกว่า 5 วินาทีในขณะที่การรีสตาร์ทที่ไม่มีข้อจำกัดจะใช้เวลาหลายชั่วโมง การขัดขวางการก่อการร้ายจะกระทำอย่างรุนแรงเพื่อสกัดเป้าหมายที่จะปล่อยกัมมันตภาพรังสี

การโจมตีจากทางอากาศเป็นปัญหาที่ได้รับการเน้นตั้งแต่การโจมตี 11 กันยายนในสหรัฐอเมริกา แต่ในปี 1972 นักจี้เครื่องบินสามคนเข้าควบคุมเที่ยวบินโดยสารภายในประเทศตามชายฝั่งตะวันออกของสหรัฐและขู่ว่าจะใช้เครื่องบินพุ่งเข้าชนโรงงานอาวุธนิวเคลียร์ของสหรัฐใน Oak Ridge รัฐเทนเนสซี เครื่องบินได้เข้าใกล้ที่หมายห่างไป 8,000 ฟุตก่อนที่ความต้องการของนักจี้จะบรรลุ[35][36].

สิ่งกีดขวางที่สำคัญที่สุดในการป้องกันการปลดปล่อยกัมมันตภาพรังสีในกรณีที่มีการโจมตีด้วยอากาศยานที่โรงไฟฟ้านิวเคลียร์คืออาคารเก็บกักและโล่ขีปนาวุธของมัน ประธาน NRC ปัจจุบันเดล ไคลน์ ได้กล่าวว่า "โรงไฟฟ้านิวเคลียร์จะมีโครงสร้างที่แข็งแกร่งโดยธรรมชาติ จากการศึกษาของเราแสดงให้เห็นการป้องกันที่เพียงพอในการโจมตีสมมุติโดยเครื่องบิน NRC ยังได้ดำเนินการหลายอย่างที่จำเป็นเพื่อให้ผู้ประกอบการโรงไฟฟ้านิวเคลียร์มีความสามารถในการจัดการกับไฟไหม้หรือระเบิดขนาดใหญ่--ไม่ว่าสิ่งนั้นจะเกิดขึ้นจากอะไร"[37].

นอกจากนี้ ผู้สนับสนุนได้ชี้ไปที่การศึกษาขนาดใหญ่ที่ดำเนินการโดย 'สถาบันวิจัยพลังงานไฟฟ้าแห่งสหรัฐอเมริกา' ที่ได้ทดสอบความทนทานของทั้งเครื่องปฏิกรณ์และสถานที่เก็บขยะเชื้อเพลิงและพบว่าพวกมันควรจะสามารถที่จะรองรับการโจมตีจากผู้ก่อการร้ายได้เมื่อเทียบกับการโจมตีของผู้ก่อการร้ายเมื่อวันที่ 11 กันยายนในสหรัฐอเมริกา เชื้อเพลิงใช้แล้วปกติจะเก็บอยู่ภายใน"โซนป้องกัน"ของโรงงาน[38] หรือในถังขนส่งเชื้อเพลิงนิวเคลียร์; การขโมยมันเพื่อนำไปใช้เป็น "ระเบิดสกปรก" จะเป็นเรื่องยากมาก การสัมผัสกับรังสีที่รุนแรงเกือบจะทำให้หมดสภาพหรือฆ่าใครก็ตามที่พยายามที่จะทำเช่นนั้นอย่างรวดเร็วและแน่นอน[39].

ทำเลที่ตั้งโรงงาน

สถานีนิวเคลียร์ Fort Calhoun ที่ล้อมรอบด้วยแม่น้ำมิสซูรี่ที่ถูกน้ำท่วม เมื่อวันที่ 16 มิถุนายน 2011

ในหลายประเทศ โรงงานมักจะตั้งอยู่บนชายฝั่งเพื่อให้เป็นแหล่งความพร้อมของน้ำหล่อเย็นสำหรับระบบน้ำบริการที่จำเป็น ผลก็คือ การออกแบบต้องพิจารณาถึงความเสี่ยงของการเกิดน้ำท่วมและคลื่นสึนามิ สภาพลังงานโลก (WEC) ระบุว่าความเสี่ยงจากภัยพิบัติกำลังเปลี่ยนแปลงและกำลังเพิ่มโอกาสของการเกิดภัยพิบัติเช่นแผ่นดินไหว, พายุไซโคลนเฮอริเคน, ไต้ฝุ่น, น้ำท่วม[40] อุณหภูมิสูง, ระดับน้ำฝนต่ำและภัยแล้งที่รุนแรงอาจนำไปสู่​​การขาดแคลนน้ำจืด[40] น้ำทะเลเป็นตัวกัดกร่อน ดังนั้นการจัดหาพลังงานนิวเคลียร์มีโอกาสที่จะได้รับผลกระทบทางลบจากปัญหาการขาดแคลนน้ำจืด[40] ปัญหาทั่วไปนี้อาจจะมีความสำคัญเพิ่มมากขึ้นเมื่อเวลาผ่านไป[40] ความผิดพลาดในการคำนวณความเสี่ยงของการเกิดน้ำท่วมได้อย่างถูกต้องนำไปสู่เหตุบังเอิญ​​ระดับ 2 ของ 'สเกลเหตุการณ์นิวเคลียร์นานาชาติ 'ระหว่าง' เหตุการณ์น้ำท่วมโรงไฟฟ้านิวเคลียร์ที่ Blayais ในปี 1999'[41] และในขณะที่น้ำท่วมเกิดจากแผ่นดินไหวและสึนามิที่ Tōhoku ในปี 2011 ที่นำไปสู่การเกิดอุบัติเหตุนิวเคลียร์ Fukushima I[42]

การออกแบบสำหรับโรงงานที่ตั้งอยู่ในโซนที่ยังมีการสั่นไหวของพื้นโลกอยู่ยังต้องพิจารณาความเสี่ยงของการเกิดแผ่นดินไหวและคลื่นสึนามิด้วย ญี่ปุ่น, อินเดีย, จีนและสหรัฐอเมริกาอยู่ในกลุ่มประเทศที่มีโรงงานอยู่ในภูมิภาคที่มีแนวโน้มของแผ่นดินไหว ความเสียหายที่เกิดกับโรงไฟฟ้านิวเคลียร์ Kashiwazaki-Kariwa ของญี่ปุ่นในปี 2007 ระหว่างการเกิดแผ่นดินไหวนอกชายฝั่ง Chuetsu[43][44] ได้ขีดเส้นใต้แสดงความกังวลโดยผู้เชี่ยวชาญด้านแผ่นดินไหวของประเทศญี่ปุ่นก่อนที่จะเกิดอุบัติเหตุฟูกูชิม่า เป็นผู้ที่เตือนสิ่งที่เรียกว่า genpatsu-shinsai (ผลกระทบแบบโดมิโนของภัยพิบัติแผ่นดินไหวสำหรับโรงไฟฟ้านิวเคลียร์)[45].

เครื่องปฏิกรณ์หลายหน่วย

ภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิแสดงให้เห็นอันตรายหลายอย่างของการสร้างเครื่องปฏิกรณ์นิวเคลียร์หลายหน่วยติดตั้งอยู่ใกล้ ๆ กัน ความใกล้ชิดแบบนี้ก่อให้เกิดอุบัติเหตุและปฏิกิริยาลูกโซ่คู่ขนานที่นำไปสู่​​การระเบิดของไฮโดรเจนสร้างความเสียหายต่ออาคารเครื่องปฏิกรณ์และน้ำที่ระบายจากบ่อเชื้อเพลิงใช้แล้วที่เปิดโล่ง--เป็นสถานการณ์หนึ่งที่อาจเป็นอันตรายมากกว่าการสูญเสียการหล่อเย็นของตัวเครื่องปฏิกรณ์เอง เพราะการตั้งอยู่ใกล้กันของเครื่องปฏิกรณ์ทั้งหลาย ผู้อำนวยการโรงงาน มาซาโอะ โยชิดะ "จึงถูกวางในตำแหน่งของความพยายามที่จะรับมือพร้อมกันของการหลอมละลายของแกนของทั้งสามเครื่องปฏิกรณ์และของการสัมผัสกับบ่อเชื้อเพลิงทั้งสามหน่วย"[46]

ระบบความปลอดภัยนิวเคลียร์

บทความหลัก: ระบบความปลอดภัยนิวเคลียร์

วัตถุประสงค์หลักสามอย่างของระบบความปลอดภัยนิวเคลียร์ตามที่กำหนดโดยคณะกรรมการกำกับกิจการพลังงานนิวเคลียร์คือการปิดเครื่องปฏิกรณ์ รักษามันอยู่ในสภาพปิด และป้องกันไม่ให้ปล่อยสารกัมมันตรังสีในช่วงเหตุการณ์และอุบัติเหตุ[47] วัตถุประสงค์เหล่านี้จะประสบความสำเร็จโดยใช้ความหลากหลายของอุปกรณ์ ซึ่งเป็นชิ้นส่วนของหลายระบบที่แตกต่างกันซึ่งแต่ละระบบก็ทำหน้าที่เฉพาะอย่าง

กิจวัตรของการปล่อยสารกัมมันตรังสี

สำหรับการอภิปรายที่ถกเถียงกันเกี่ยวกับผลกระทบต่อสุขภาพจากการปล่อยเป็นกิจวัตรตามปกติให้ดูบทความเรื่อง en:Nuclear power debate#Health effects on population near nuclear power plants and workers และ en:Environmental impact of nuclear power#Risk of cancer

ในระหว่างปฏิบัติการเป็นกิจวัตรทุก ๆ วัน การปล่อยสารกัมมันตรังสีจากโรงไฟฟ้านิวเคลียร์จะถูกกระทำข้างนอกของโรงงานแม้ว่าพวกมันจะมีในปริมาณที่เล็กน้อยมาก[48][49][50][51]. การปล่อยในแต่ละวันจะปล่อยไปในอากาศ, น้ำ, และดิน[49][50]

NRC กล่าวว่า "โรงไฟฟ้านิวเคลียร์บางครั้งก็ปล่อยก๊าซและของเหลวกัมมันตรังสีในสภาพแวดล้อมที่อยู่ภายใต้สภาวะที่ถูกควบคุมและถูกตรวจสอบเพื่อให้แน่ใจว่าพวกมันไม่ก่อให้เกิดอันตรายต่อประชาชนหรือสิ่งแวดล้อม"[52] และ "การปล่อยตามกิจวัตรในระหว่างการดำเนินงานปกติของโรงงานพลังงานนิวเคลียร์ไม่เคยมีพิษรุนแรง"[53]

อ้างถึงสหประชาชาติ (UNSCEAR) การดำเนินงานโรงไฟฟ้านิวเคลียร์ปกติที่รวมถึงวัฏจักรเชื้อเพลิงนิวเคลียร์จะมีการสัมผ้สกับรังสีในที่สาธารณะเฉลี่ยประจำปีจำนวน 0.0002 mSv (มิลลิ Sievert); มรดกของภัยพิบัติเชอร์โนบิลเป็น 0.002 mSv/ปีเป็นค่าเฉลี่ยทั่วโลก ณ รายงานปี 2008; และค่าเฉลี่ยการสัมผ้สรังสีตามธรรมชาติที่ 2.4 mSv/ปี แม้ว่าบ่อยครั้งที่แตกต่างกันขึ้นอยู่กับสถานที่ตั้งของแต่ละบุคคลตั้งแต่ 1-13 mSv[54]

ความปลอดภัยอย่างสมบูรณ์ของตำนานญี่ปุ่น

ในประเทศญี่ปุ่น หลายหน่วยงานภาครัฐและบริษัทนิวเคลียร์มีการส่งเสริมตำนานสาธารณะเรื่อง "ความปลอดภัยอย่างสมบูรณ์" ที่ผู้เสนอพลังงานนิวเคลียร์ได้ทนุถนอมตลอดหลายทศวรรษที่ผ่านมา[55]. คลื่นสึนามิที่ก่อให้เกิดภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิน่าจะได้ถูกการคาดการณ์ไว้แล้วล่วงหน้า[56] และในเดือนมีนาคม 2012 นายกรัฐมนตรีโยชิฮิโกะ โนดะได้รับรู้ว่ารัฐบาลญี่ปุ่นได้ร่วมรับการตำหนิสำหรับภัยพิบัตินิวเคลียร์ฟุกุชิมะไดอิชิ โดยบอกว่าเจ้าหน้าที่มองไม่เห็น "ความไม่ถูกต้องทางเทคโนโลยี" ของประเทศ และทุกคนถลำลึกเกินไปกับ "ตำนานความปลอดภัย"[57]

ในประเทศญี่ปุ่น โครงการระดับชาติในการพัฒนาหุ่นยนต์สำหรับใช้ในกรณีฉุกเฉินนิวเคลียร์ถูกยกเลิกกลางคันเพราะมัน "ตีดังเกินไปของอันตรายที่อยู่ข้างใต้" ญี่ปุ่นที่ควรจะเป็นพลังสำคัญในเรื่องหุ่นยนต์ ไม่ได้ส่งใครเลยเข้าไปในฟูกูชิม่าในช่วงภัยพิบัติ ในทำนองเดียวกัน นิวเคลียร์คณะกรรมาธิการความปลอดภัยของญี่ปุ่นได้กำหนดแนวทางความปลอดภัยสำหรับโรงงานนิวเคลียร์น้ำเบาไว้ว่า "ศักยภาพสำหรับการสูญเสียพลังงานที่ขยายออกไปไม่จำเป็นต้องได้รับการพิจารณา" อย่างไรก็ตาม มันชัดเจนว่าเป็นเพราะการสูญเสียพลังงานที่ขยายออกไปให้กับปั๊มหล่อเย็นดังกล่าวที่ทำให้เกิด meltdown ที่โรงงานนิวเคลียร์ฟูกูชิม่า[58]

ใกล้เคียง

โรงไฟฟ้านิวเคลียร์ โรงไฟฟ้านิวเคลียร์ฟูกูชิมะแห่งที่หนึ่ง โรงไฟฟ้าพลังงานฟอสซิล โรงไฟฟ้าพลังงานถ่านหิน โรงไฟฟ้าบางปะกง โรงไฟฟ้านิวเคลียร์ฟูกูชิมะแห่งที่สอง โรงไฟฟ้าศิลปะ โรงไฟฟ้านิวเคลียร์เชียร์โนบีล โรงไฟฟ้าพลังความร้อนหงสา โรงไฟฟ้านิวเคลียร์ซาปอริฌเฌีย

แหล่งที่มา

WikiPedia: โรงไฟฟ้านิวเคลียร์ http://213.198.118.156/info/inf29.htm http://www.uic.com.au/reactors.htm http://www.ceem.unsw.edu.au/content/userDocs/Nukes... http://www.foe.org.au/anti-nuclear/issues/nfc/powe... http://www.mapw.org.au/nuclear-reactors/rrr-index.... http://www.sckcen.be http://www.ae4rv.com/games/nuke.htm http://www.antaranews.com/en/news/76867/indonesia-... http://atomndt.com/en/ http://www.bloomberg.com/apps/news?pid=10000103&si...