แนวคิด ของ ไฟฟ้า

ประจุไฟฟ้า

ดูบทความหลักที่: ประจุไฟฟ้า

ดูเพิ่มเติม: อิเล็กตรอน, โปรตอน, ไอออน

เครื่องตรวจวัดไฟฟ้าสถิตแบบแผ่นทองมีลักษณะเป็นโดมแก้วใสมีหนึ่งขั้วไฟฟ้าภายนอกที่ต่อผ่านแก้วไปยังแผ่นทองคำเปลวหนึ่งคู่ แท่งที่มีประจุเมื่อแตะกับขั้วไฟฟ้าภายนอกจะทำให้แผ่นทองผลักกันและกัน

การปรากฏตัวของประจุก่อให้เกิดแรงไฟฟ้​​าสถิต นั่นคือประจุจะออกแรงอย่างหนึ่งต่อกัน ผลกระทบเป็นที่รู้จัก แต่ไม่เข้าใจ ในสมัย​​โบราณ[17]:457 ลูกกลมน้ำหนักเบาที่ห้อยลงมาด้วยเชือก สามารถสร้างประจุขึ้นบนตัวมันได้โดยการสัมผัสกับแท่งแก้ว ซึ่งตัวแท่งแก้วถูกสร้างประจุมาก่อนโดยการถูกับผ้า ถ้าลูกกลมที่คล้ายกันอีกลูกหนึ่งถูกสร้างประจุโดยแท่งแก้วอันเดียวกัน ลูกกลมทั้งสองจะผลักกัน นั่นคือประจุจะออกแรงที่บังคับให้ลูกกลมทั้งสองแยกออกจากกัน ลูกกลมสองลูกที่ถูกสร้างประจุด้วยแท่งอำพันที่ผ่านการขัดถูก็ผลักกันเช่นกัน แต่ถ้าลูกหนึ่งถูกสร้างประจุด้วยแท่งแก้ว และอีกลูกถูกสร้างประจุด้วยแท่งอำพัน ลูกกลมทั้งสองจะดึงดูดกัน ปรากฏการณ์เหล่านี้ถูกตรวจสอบในช่วงปลายศตวรรษที่สิบแปดโดยคูลอมบ์ ซึ่งเป็นผู้สรุปว่าประจุจะแสดงตัวในสองรูปที่หักล้างกัน การค้นพบนี้นำไปสู่วลีที่รู้จักกันดีว่า ประจุเหมือนกันผลักกันและประจุต่างกันดึงดูดกัน[17]

แรงจะกระทำบนตัวอนุภาคที่มีประจุเอง ดังนั้นประจุมีแนวโน้มที่จะแพร่กระจายตัวเองอย่างสม่ำเสมอเท่าที่เป็นไปได้ทั่วพื้นผิวนำกระแส ขนาดของแรงแม่เหล็กไฟฟ้าไม่ว่าจะเป็นแบบดึงดูดหรือแบบผลักจะถูกกำหนดโดยกฎของคูลอมบ์, ซึ่งเชื่อมโยงแรงกับผลิตภัณฑ์ของประจุและมีความสัมพันธ์แบบผกผันกำลังสอง (อังกฤษ: inverse-square) กับระยะทางระหว่างจุดศูนย์กลางของทั้งสองลูกกลม[23][24]:35 แรงแม่เหล็กไฟฟ้ามีความแรงมาก ความแรงเป็นรองก็แต่กับอันตรกิริยาอย่างเข้ม[25] แต่ไม่เหมือนแรงนั้นที่มันดำเนินการไปทั่วทุกระยะทาง[26] ในการเปรียบเทียบกับแรงโน้มถ่วงที่อ่อนกว่ามาก แรงแม่เหล็กไฟฟ้าที่ผลักอิเล็กตรอนสองตัวให้แยกจากกันจะเป็น 1042 เท่าของแรงดึงดูดจากแรงโน้มถ่วงที่ดึงพวกมันเข้ามารวมกัน[27]


การศึกษาได้แสดงให้เห็นว่าต้นกำเนิดของประจุไฟฟ้ามาจากบางชนิดของอนุภาคย่อยของอะตอม ที่มีคุณสมบัติของประจุไฟฟ้า ประจุไฟฟ้าทำให้เกิดแรงแม่เหล็กไฟฟ้าและพวกมันก็มีปฏิสัมพันธ์กับแรงแม่เหล็กไฟฟ้าด้วย แรงแม่เหล็กไฟฟ้าเป็นหนึ่งในสี่อันตรกิริยาพื้นฐาน ของธรรมชาติ พาหะที่คุ้นเคยมากที่สุดของประจุไฟฟ้าคืออิเล็กตรอนและโปรตอน การทดลองได้แสดงให้เห็นว่าประจุจะเป็นปริมาณอนุรักษ์ (หรือปริมาณคงที่) ค่าหนึ่ง นั่นคือ ประจุสุทธิ (หลังจากถ่ายเทไปมาแล้ว) ภายในระบบโดดเดี่ยวหนึ่งจะมีค่าคงที่เสมอโดยไม่คำนึงถึงการเปลี่ยนแปลงใด ๆ ที่เกิดขึ้นภายในระบบนั้น[28] ภายในระบบ ประจุอาจถูกโอนย้ายระหว่างระบบย่อยด้วยกัน อาจจะโดยการสัมผัสโดยตรงหรือโดยการวิ่งผ่านไปตามวัตถุตัวนำเช่นสายลวด[24]:2–5 คำศัพท์อย่างไม่เป็นทางการของไฟฟ้าสถิตจะหมายความถึงการปรากฏตัวของประจุเป็นสุทธิ (หรือ 'ไม่สมดุล') บนร่างกายหนึ่งปกติจะเกิดขึ้นเมื่อวัตถุที่ไม่เหมือนกันขัดถูกัน ประจุจะถูกถ่ายเทจากวัตถุหนึ่งไปยังอีกวัตถุหนึ่ง

ประจุบนอิเล็กตรอนและโปรตอนจะมีเครื่องหมายตรงกันข้ามกัน ดังนั้นจำนวนของประจุอาจจะแสดงเครื่องหมายเป็นได้ทั้งบวกหรือลบ โดยธรรมเนียมปฏิบัติ ประจุที่ถูกนำพาโดยอิเล็กตรอนจะถือว่าเป็นลบ และนำพาโดยโปรตอนจะเป็นบวก เป็นธรรมเนียมที่มีต้นกำเนิดมาจากงานของเบนจามิน แฟรงคลิน[29] จำนวนของประจุมักจะได้รับสัญลักษณ์เป็น Q และมีค่าเป็นคูลอมบ์[30] อิเล็กตรอนแต่ละตัวจะนำพาประจุจำนวนเดียวกันคือประมาณ −1.6022×10−19 คูลอมบ์ โปรตอนจะมีประจุที่มีค่าเท่ากันแต่เครื่องหมายตรงกันข้าม ดังนั้นจึงเท่ากับ +1.6022×10−19 คูลอมบ์ ประจุไม่ได้อยู่แค่ในสสารเท่านั้น แต่ยังอยู่ในปฏิสสารอีกด้วย แต่ละปฏิอนุภาคจะแบกประจุที่เท่ากันและตรงข้ามกันกับอนุภาคที่สอดคล้องกัน[31]

ประจุสามารถวัดได้หลายวิธี เครื่องมือวัดยุคต้นก็คือเครื่องตรวจวัดไฟฟ้าสถิตแบบแผ่นทอง ซึ่งแม้ว่ายังคงใช้อยู่ในห้องเรียนเพื่อการสาธิต มันได้ถูกแทนที่โดยอิเล็กโทรมิเตอร์แบบอิเล็กทรอนิกส์[24]:2–5

กระแสไฟฟ้า

ดูบทความหลักที่: กระแสไฟฟ้า

การเคลื่อนที่ของประจุไฟฟ้าเราเรียกว่ากระแสไฟฟ้า ความเข้มของมันเราวัดได้ในหน่วยแอมแปร์ กระแสไฟฟ้าสามารถประกอบด้วยการเคลื่อนที่ของอนุภาคใด ๆ ที่มีประจุ โดยทั่วไปส่วนใหญ่อนุภาคเหล่านี้จะเป็นอิเล็กตรอน แต่ประจุใด ๆ ที่กำลังเคลื่อนที่ทำให้เกิดกระแส

จากธรรมเนียมปฏิบัติในอดีต กระแสบวกถูกกำหนดให้มีทิศทางเดียวกันกับการไหลเนื่องจากประจุบวกที่มันมีอยู่ หรือมีการไหลส่วนของวงจรที่เป็นบวกมากที่สุดไปยังส่วนที่เป็นลบมากที่สุด การกำหนดกระแสในลักษณะนี้เรียกว่ากระแสตามธรรมเนียมปฏิบัติ การเคลื่อนที่ของอิเล็กตรอนที่มีประจุลบไปรอบวงจรไฟฟ้า หนึ่งในรูปแบบของกระแสที่คุ้นเคยที่สุดจึงถือว่าเป็นบวกในทิศทาง ตรงกันข้าม กับทิศทางของอิเล็กตรอน[32] อย่างไรก็ตาม ขึ้นอยู่กับหลายเงื่อนไข กระแสไฟฟ้าสามารถประกอบด้วยการไหลของอนุภาคในทิศทางใดทิศทางหนึ่ง หรือแม้แต่ทั้งสองทิศทางในเวลาเดียวกัน การไหลตามธรรมเนียมปฏิบัติจากบวกไปลบมีการใช้อย่างกว้างขวางเพื่อทำให้สถานะการณ์นี้ง่ายขึ้น

สายไฟโลหะสองเส้นทำเป็นรูปตัว V กลับหัว ประกายไฟฟ้าส้มขาวสว่างแถบทำให้ตาบอดจะไหลระหว่างปลายทั้งสอง เป็นการสาธิตให้เห็นถึงพลังงานของการไหลของกระแส

กระบวนการที่ยอมกระแสไฟฟ้าไหลผ่านวัสดุเรียกว่าการนำไฟฟ้า และธรรมชาติของมันสามารถแปรไปตามธรรมชาติของอนุภาคที่มีประจุและวัสดุที่อนุภาคเหล่านั้นจะไหลผ่าน ตัวอย่างของกระแสไฟฟ้าจะรวมถึงการนำกระแสของโลหะเมื่ออิเล็กตรอนไหลไปในตัวนำเช่นโลหะ อีกตัวอย่างหนึ่งคือการแยกสลายด้วยไฟฟ้าเมื่อไอออน (อะตอมที่มีประจุ) ไหลผ่านของเหลวหรือผ่านพลาสมาเช่นสปากของไฟฟ้า ในขณะที่อนุภาคเองสามารถเคลื่อนที่ได้อย่างเชื่องช้า บางครั้งด้วยความเร็วลอยเฉลี่ยเพียงเศษของมิลิเมตรต่อวินาทีเท่านั้น[24]:17 สนามไฟฟ้าที่ขับพวกมันนั้นตัวมันเองแผ่กระจายที่ความเร็วใกล้กับความเร็วแสง เปิดโอกาสให้สัญญาณไฟฟ้าสามารถผ่านไปได้อย่างรวดเร็วไปตามเส้นลวด[33]

กระแสไฟฟ้าทำให้เกิดผลกระทบที่สังเกตเห็นได้หลายอย่าง ซึ่งตามประวัติศาสตร์ผลกระทบเหล่านั้นเป็นวิธีการเพื่อการรับรู้การปรากฏตัวของมัน ที่ว่าน้ำสามารถถูกแยกสลายได้โดยกระแสจากเซลล์กัลวานี ผลกระทบนี้ถูกค้นพบโดยวิลเลี่ยม นิโคลสันกับเซอร์ แอนโธนี คาร์ลิเซิล สองนักวิทยาศาสตร์ชาวอังกฤษในปีคริสต์ศักราช 1800 กระบวนการนี้ปัจจุบันเรียกว่า[[การแยกสลายด้วยไฟฟ้า]หรืออิเล็กโตรไลซิส งานของพวกเขาถูกขยายออกไปอย่างมหาศาลโดยไมเคิล ฟาราเดย์ในปี 1833 กระแสไฟฟ้าเมื่อไหลผ่านความต้านทาน มันทำให้เกิดความร้อนอยู่ภายใน ผลกระทบนี้เจมส์ เพรสคอต จูลได้ทำการศึกษามันทางคณิตศาสตร์ในปี 1840[24]:23–24 หนึ่งในการคันพบที่เกี่ยวข้องกับกระแสที่สำคัญที่สุดถูกค้นพบโดยบังเอิญโดยฮันส์ คริสเทียน เออร์สเตดในปี 1820 เมื่อครั้งที่เขากำลังเตรียมการสอน เขาพบเห็นกระแสในเส้นลวดไปรบกวนเข็มของเข็มทิศแม่เหล็ก[34] เขาได้ค้นพบทฤษฎีแม่เหล็กไฟฟ้า ซึ่งเป็นปฏิสัมพันธ์พื้นฐานระหว่างแม่เหล็กกับไฟฟ้า ระดับของการปลดปล่อยสนามแม่เหล็กไฟฟ้าที่สร้างขึ้นโดยการอาร์กด้วยไฟฟ้าจะสูงพอที่จะสร้างการรบกวนจากแม่เหล็กไฟฟ้า ซึ่งสามารถก่อให้เกิดอันตรายกับการทำงานของอุปกรณ์ใกล้เคียง[35]

ในทางวิศวกรรมหรือการใช้งานตามอาคารบ้านเรือน กระแสมักจะถูกอธิบายว่าเป็นไฟฟ้ากระแสตรง (DC) หรือไฟฟ้ากระแสสลับ (AC) คำศัพท์เหล่านี้บอกว่ากระแสจะแปรเปลี่ยนตามเวลาได้อย่างไร กระแสตรงอย่างที่ถูกผลิตขึ้นโดยแบตเตอรีและเป็นที่ต้องการของอุปกรณ์อิเล็กทรอนิกส์ส่วนใหญ่ จะไหลไปในทิศทางเดียวคือจากขั้วบวกผ่านวงจรภายนอกไปยังขั้วลบ[36]:11 ถ้า อย่างที่เกิดขึ้นเป็นส่วนใหญ่ การไหลนี้ถูกนำพาโดยอิเล็กตรอน พวกมันจะต้องเดินทางไปในทิศทางตรงกันข้าม กระแสสลับเป็นกระแสที่ไหลในทิศทางกลับไปกลับมาซ้ำ ๆ กัน; เกือบตลอดเวลาการไหลนี้ใช้รูปแบบของคลื่นไซน์[36]:206–207 ดังนั้นกระแสสลับจะไหลไปและกลับมาภายในตัวนำโดยปราศจากประจุที่เคลื่อนที่เป็นระยะทางสุทธิใดในช่วงเวลา ค่าของกระแสสลับเฉลี่ยตามเวลาเป็นศูนย์ แต่มันส่งมอบพลังงานในทิศทางแรกก่อน จากนั้นก็ทิศทางย้อนกลับ กระแสสลับได้รับผลกระทบจากคุณสมบัติทางไฟฟ้​​าที่ไม่ถูกรับรู้ภายใต้สภาวะมั่นคงของกระแสตรง เช่นอินดักแตนซ์และคาปาซิแตนซ์[36]:223–225 อย่างไรก็ตามคุณสมบัติเหล่านี้อาจมีความสำคัญเมื่อวงจรอยู่ภายใต้สัญญาณไฟกระโชก (อังกฤษ: transient) เช่นเมื่อถูกป้อนพลังงานไฟฟ้าครั้งแรก

สนามไฟฟ้า

ดูบทความหลักที่: สนามไฟฟ้า

ดูเพิ่มเติม: ไฟฟ้าสถิต

แนวคิดของสนามไฟฟ้าได้รับการแนะนำโดยไมเคิล ฟาราเดย์ สนามไฟฟ้าถูกสร้างขึ้นโดยวัตถุที่มีประจุในที่ว่างล้อมรอบมัน และให้ผลลัพธ์เป็นแรงที่กระทำบนประจุอื่นใด ๆ ที่ถูกวางภายในสนาม สนามไฟฟ้าจะกระทำระหว่างสองประจุในลักษณะที่คล้ายคลึงกับวิธีการที่สนามแรงโน้มถ่วงจะกระทำระหว่างสองมวล และเหมือนมัน จะขยายไปสู่​​อินฟินิตี้และแสดงความสัมพันธ์แบบกำลังสองผกผันกับระยะทาง[26] อย่างไรก็ตาม มีความแตกต่างที่สำคัญอย่างหนึ่ง แรงโน้มถ่วงจะทำหน้าที่ดึงดูด ดึงมวลทั้งสองเข้าหากัน ในขณะที่สนามไฟฟ้าสามารถให้ผลลัพธ์ทั้งการดึงดูดหรือการผลักกัน เนื่องจากวัตถุที่ใหญ่เช่นดาวเคราะห์โดยทั่วไปจะขนส่งประจุแบบไม่มีจำนวนเป็นสุทธิ สนามไฟฟ้าในระยะห่างมักจะเป็นศูนย์ ดังนั้นแรงโน้มถ่วงคือพลังหลักที่ระยะห่างในจักรวาล แม้ว่าจะอ่อนกว่ามาก[27]

เส้นสนามกระจายออกมาจากประจุบวกเหนือแผ่นตัวนำแบนราบ

โดยทั่วไปสนามไฟฟ้าแปรเปลี่ยนในที่ว่าง (เกือบทั้งหมดของสนามไฟฟ้าจะแปรเปลี่ยนในที่ว่าง ยกเว้นสนามไฟฟ้ารอบ ๆ แผ่นตัวนำที่ขยายไปไกลถึงอินฟินิตี้ สนามของมันจะสม่ำเสมอ) และความแข็งแรงที่คนใดคนหนึ่งรายการที่ถูกกำหนดให้เป็นแรง (ต่อภาระต่อหน่วย) และความแรงของมันที่จุดหนึ่งจุดใดจะถูกกำหนดเป็นแรง (ต่อหน่วยประจุ) ที่จะรู้สึกได้โดยประจุที่อยู่นิ่งแต่ขนาดเล็กน้อยถ้าประจุนั้นถูกวางที่จุดนั้น[17]:469–470 ประจุตามแนวคิด ที่เรียกว่า 'ประจุทดสอบ' จะต้องมีขนาดเล็กและสูญหายได้เพื่อป้องกันไม่ให้สนามไฟฟ้าไปรบกวนสนามหลักและมันยังจะต้องอยู่นิ่งอีกด้วยเพื่อป้องกันผลกระทบจากสนามแม่เหล็กอื่น ๆ เมื่อสนามไฟฟ้าถูกกำหนดในแง่ของแรง และแรงเป็นเวกเตอร์ ดังนั้นสนามไฟฟ้าจึงเป็นเวกเตอร์ด้วย คือมีทั้งขนาดและทิศทาง โดยเฉพาะมันเป็นสนามเวกเตอร์[17]:469–470

การศึกษาเกี่ยวกับสนามไฟฟ้าที่ถูกสร้างขึ้นโดยประจุนิ่งถูกเรียกว่าไฟฟ้าสถิต สนามอาจจะมองเห็นได้โดยชุดของเส้นสมมุติที่ทิศทางของมันที่จุดใด ๆ จะขนานไปกับทิศทางของสนาม แนวคิดนี้ถูกนำเสนอโดยฟาราเดย์[37] ที่ตั้งชื่อมันว่า 'เส้นแรง 'บางครั้งยังคงเห็นว่าคำนี้ถูกใช้งานอยู่ เส้นสนามเป็นเส้นทางที่จุดประจุบวกหนึ่งจะกระจายออกไปเมื่อมันถูกบังคับให้เคลื่อนที่ภายในสนาม อย่างไรก็ตามเส้นสนามเหล่านี้เป็นแนวคิดในจินตนาการโดยไม่มีการดำรงอยู่จริงทางกายภาพ และสนามจะแทรกซึมไปทุกพื้นที่ที่แทรกแซงระหว่างเส้นสนาม[37] เส้นสนามจะกระจายออกมาจากประจุนิ่งและมีคุณสมบัติที่สำคัญหลายอย่าง: อย่างแรก พวกมันมีจุดกำเนิดจากประจุบวกและสิ้นสุดที่ประจุลบ; อย่างที่สอง พวกมันจะต้องเข้าในตัวนำที่ดีใด ๆ ที่มุมฉาก และอย่างที่สาม พวกมันอาจไม่เคยข้ามกันเองหรือไม่เคยสิ้นสุดตัวมันเอง[17]:479

วัตถุตัวนำที่กลวงจะนำพาประจุทั้งหมดบนพื้นผิวด้านนอกของมัน ดังนั้นสนามจะเป็นศูนย์ในทุกสถานที่ภายในวัตถุ[24]:88 นี้เป็นหลักของการทำงานของกรงฟาราเดย์ ซึ่งเป็นเปลือกโลหะตัวนำที่แยกส่วนภายในของมันออกจากผลกระทบไฟฟ้าภายนอก

หลักการของไฟฟ้​​าสถิตมีความสำคัญเมื่อทำการออกแบบรายการของอุปกรณ์ไฟฟ้าแรงสูง มีข้อจำกัดที่แน่นอนต่อความแรงของสนามไฟฟ้าที่ตัวกลางใด ๆ อาจจะต้องมีความอดทน ถ้าเลยจากจุดนี้ไป ความล้มเหลวด้านไฟฟ้า (อังกฤษ: electrical breakdown) อาจจะเกิดขึ้นและอาร์คไฟฟ้าจะทำให้เกิดประกายไฟวาบระหว่างส่วนที่มีประจุด้วยกัน ตัวกลางเช่นอากาศเป็นตัวอย่าง มีแนวโน้มที่จะอาร์คข้ามช่องว่างเล็ก ๆ ถ้าความแรงของสนามไฟฟ้าเกินกว่า 1 กิโลโวลต์ต่อเซนติเมตร แต่เมื่อต้องข้ามช่องว่างขนาดใหญ่ขึ้น ค่าความแรงจนเบรกดาวน์ของสนามไฟฟ้าจะสูงขึ้น บางทีอาจสูงถึง 30 กิโลโวลต์ต่อเซนติเมตร[38]

ตัวอย่างที่เกิดขึ้นตามธรรมชาติและมองเห็นได้มากที่สุดของไฟฟ้าสถิตคือฟ้าผ่า ที่เกิดขึ้นเมื่อประจุแยกออกจากกันในเมฆโดยการยกขึ้นสูงของโดมอากาศ และเพิ่มสนามไฟฟ้าในอากาศจนมากเกินกว่าอากาศจะสามารถทนต่อ เมฆฟ้าผ่าขนาดใหญ่อาจมีแรงดันไฟฟ้าสูงถึง 100 MV และมีพลังงานปลดปล่อยออกมาอาจใหญ่มากถึง 250 กิโลวัตต์ต่อชั่วโมง[39]

ความแรงของสนามได้รับผลกระทบอย่างมากจากวัตถุตัวนำที่อยู่บริเวณใกล้เคียง โดยเฉพาะอย่างยิ่งมันจะรุนแรงเมื่อมันถูกบังคับให้โค้งรอบวัตถุปลายแหลมคม หลักการนี้​​้เป็นประโยชน์ในสายล่อฟ้า ที่ปลายแหลมของมันจะทำหน้าที่ส่งเสริมให้เกิดฟ้าผ่าลงที่จุดนั้น แทนที่จะลงมาที่อาคารที่มันปกป้อง[40]:155

ศักย์ไฟฟ้า

ดูบทความหลักที่: ศักย์ไฟฟ้า

ดูเพิ่มเติม: แรงดันไฟฟ้าและแบตเตอรี่

แบตเตอรี่ AA สองตัว แต่ละตัวมีเครื่องหมาย + ที่ปลายด้านหนึ่งเพื่อแสดงขั้วของความต่างศักย์ระหว่างสองขั้วไฟฟ้า

แนวคิดของศักย์ไฟฟ้าจะเชื่อมโยงอย่างใกล้ชิดกับแนวคิดของสนามไฟฟ้า ประจุขนาดเล็กที่วางอยู่ภายในสนามไฟฟ้าจะประสบกับแรงหนึ่ง และก่อนหน้านั้น ในการที่จะนำประจุนั้นไปที่จุดนั้นโดยต้านกับแรงดังกล่าวได้ มันจำเป็นต้องมีงานเชิงกล ศักย์ไฟฟ้าที่จุดใด ๆ จะถูกกำหนดเป็นพลังงานที่ใช้เพื่อนำประจุทดสอบหนึ่งหน่วยจากระยะอนันต์อย่างช้า ๆ ไปยังจุดนั้น มันมักจะถูกวัดเป็นค่าโวลต์ และหนึ่งโวลต์เป็นศักย์ภาพสำหรับหนึ่งจูลของการทำงานจะต้องจ่ายไปเพื่อนำประจุหนึ่งคูลอมบ์จากอนันต์มาที่จุดนั้น[17]:494–498 นิยามของศักย์นี้ ในขณะที่เป็นทางการ มีการใช้ในทางปฏิบัติเล็กน้อย และแนวคิดที่มีประโยชน์มากกว่าคือความต่างศักย์ไฟฟ้า และมันเป็นพลังงานที่จำเป็นในการย้ายหนึ่งหน่วยประจุระหว่างจุดสองจุดที่กำหนด สนามไฟฟ้าจะมีคุณสมบัติพิเศษที่มันเป็นอนุรักษ์, ซึ่งหมายถึงว่าเส้นทางที่ใช้โดยประจุทดสอบจะไม่เกี่ยวข้อง นั่นคือทุกเส้นทางระหว่างสองจุดที่กำหนดจะใช้พลังงานเท่ากัน และดังนั้นค่าหนึ่งเดียวสำหรับความต่างศักย์อาจถูกระบุ[17]:494–498 คำว่าโวลต์ได้ถูกระบุอย่างแข็งแรงอย่างมากว่าเป็นหน่วยของทางเลือกสำหรับการวัดและคำอธิบายของความต่างศักย์ไฟฟ้า คำว่าโวลเตจจะเห็นมากขึ้นในการใช้ประจำวัน

สำหรับวัตถุประสงค์ในทางปฏิบัติ มันจะเป็นประโยชน์ในการกำหนดจุดอ้างอิงทั่วไปที่จุดนี้ศักย์ทั้งหลายอาจจะถูกพูดถีงและเปรียบเทียบกับ ในขณะที่จุดนี้อาจจะอยู่ที่อินฟินิตี้ จุดอ้างอิงที่มีประโยชน์มากกว่าคือตัวโลกเอง ซึ่งถูกถือว่ามีศักย์เดียวกันทุกที่ จุดอ้างอิงนี้โดยธรรมชาติจะใช้ชื่อว่ากราวด์หรือดิน โลกหรือดินถุกถือว่าเป็นแหล่งที่ไม่ชัดเจนของปริมาณที่เท่ากันของประจุบวกและลบ เพราะฉะนั้นมันจึงไม่มีการปลดปล่อยและเติมประจุไฟฟ้าเข้าไปใหม่ได้[41]

ศักย์ไฟฟ้าเป็นปริมาณสเกลาร์ นั่นคือ มันมีแต่ปริมาณเท่านั้นไม่มีทิศทาง มันอาจถูกมองว่าเหมือนกับความสูง: อุปมาเหมือนวัตถุที่ถูกปล่อยออกมาจะ 'ตก' ผ่านความแตกต่างในความสูงที่เกิดจากสนามแรงโน้มถ่วง ดังนั้นวัตถุก็คือประจุจะ 'ตก' ผ่านแรงดันที่เกิดโดยสนามไฟฟ้า[42] อย่างที่ relief map จะแสดงจุดเครื่องหมายของเส้นระดับชั้นดิน (อังกฤษ: contour line) ที่มีความสูงเท่ากัน หลาย ๆ จุดที่เป็นเครื่องหมายของเส้นที่มีศักย์เท่ากัน (ที่เรียกว่า equipotentials) อาจถูกวาดรอบ ๆ วัตถุที่มีประจุไฟฟ้าสถิตย์ เส้น equipotentials เหล่านี้จะข้ามทุกเส้นแรงเป็นมุมฉาก และยังต้องวางตัวขนานกับพื้นผิวของตัวนำอีกด้วย มิฉะนั้นนี่จะผลิตแรงที่จะย้ายพาหะของประจุเพื่อที่จะทำให้ศักย์ของพื้นผิวสม่ำเสมอกัน

สนามไฟฟ้าถูกกำหนดอย่างเป็นทางการเป็นแรงที่กระทำต่อหน่วยประจุ แต่แนวคิดของศักย์ไฟฟ้าจะช่วยให้คำนิยามมีประโยชน์มากขึ้นและเทียบเท่า: สนามไฟฟ้าคือการไล่ระดับของศักย์ไฟฟ้า มักจะมีค่าเป็นโวลต์ต่อเมตร ทิศทางเวกเตอร์ของสนามจะเป็นเส้นของความลาดชันที่ยิ่งใหญ่ที่สุดของศักย์ไฟฟ้า และเป็นจุดที่ equipotentials วางตัวอยู่ด้วยกันและใกล้กันที่สุด[24]:60

แม่เหล็กไฟฟ้า

ดูบทความหลักที่: แม่เหล็กไฟฟ้า
เส้นลวดที่นำกระแสไปในทิศทางด้านล่าง ก่อให้เกิดสนามแม่เหล็กรอบเส้นลวดโดยมีเส้นแรงทวนเข็มนาฬิกาตามกฎมือขวา (เมื่อกำมือขวาแล้วชี้ห้วแม่มือขึ้น ถ้ากระแสไหลในทิศทางของหัวแม่มือ เส้นแรงแม่เหล็กจะมีทิศทางตามนิ้วที่เหลือทั้งสี่)

การค้นพบของนายเออสเตดในปี 1821 ที่สนามแม่เหล็กจะปรากฏรอบเส้นลวดที่มีกระแสไหลได้ชี้ให้เห็นว่ามีความสัมพันธ์โดยตรงระหว่างไฟฟ้าและแม่เหล็ก นอกจากนี้การมีปฏิสัมพันธ์ดูเหมือนแตกต่างจากแรงโน้มถ่วงและแรงไฟฟ้าสถิต-สองแรงของธรรมชาติที่รู้จักกันตอนนั้น แรงบนเข็มของเข็มทิศไม่ได้ชี้นำเข็มไปทางลวดหรือผลักมันไปไกลจากลวดนำกระแส แต่กระทำเป็นมุมฉากกับเข็ม[34] เออสเตดได้พูดอย่างคลุมเครือเล็กน้อยว่า "ไฟฟ้​​ากระทำแบบขัดแย้งในลักษณะการหมุน" แรงยังขึ้นอยู่กับทิศทางของกระแสอีกด้วย เพราะถ้ากระแสไหลกลับทาง แรงก็จะกลับทางด้วย[43]

เออสเตดไม่เข้าใจการค้นพบของเขาอย่างสมบูรณ์ แต่เขาสังเกตว่าผลลัพธ์จะแลกเปลี่ยนกันและกัน นั่นคือกระแสสร้างแรงบนแม่เหล็กและสนามแม่เหล็กสร้างแรงบนกระแส ปรากฏการณ์ไดัถูกตรวจสอบต่อไปโดยแอมแปร์ ที่ค้นพบว่าเส้นลวดคู่ขนานนำกระแสสองเส้นสร้างแรงบนกันและกัน นั่นคือถ้าเส้นลวดสองเส้นนั้นนำกระแสในทิศทางเดียวกันแรงที่เกิดจะดึงดูดกัน ในขณะที่เส้นลวดทั้งสองถ้ามีกระแสในทิศทางตรงข้ามกันแรงที่เกิดจะผลักกัน[44] ปฏิสัมพันธ์จะถูกควบคุมโดยโดยสนามแม่เหล็กที่กระแสแต่ละเส้นลวดผลิตขึ้น และเกิดเป็นพื้นฐานสำหรับนิยามของแอมแปร์ระหว่างประเทศ[44]

ภาพตัดขวางของมอเตอร์ไฟฟ้าขนาดเล็ก มอเตอรืไฟฟ้าจะใช้ประโยชน์จากผลกระทบที่สำคัญของทฤษฎีแม่เหล็กไฟฟ้า กระแสที่ใหลอยู่ในสนามไฟฟ้าจะประสบกับแรงหนึ่งที่ตั้งฉากกับทั้งสนามและกระแส

ความสัมพันธ์ระหว่างสนามแม่เหล็กกับกระแสจะมีความสำคัญอย่างมาก เพราะมันได้นำไปสู่​​การประดิษฐ์มอเตอร์ไฟฟ้าของไมเคิล ฟาราเดย์ในปี 1821 มอเตอร์ขั้วเหมือน (อังกฤษ: homopolar motor) ของฟาราเดย์ประกอบด้วยแม่เหล็กถาวรวางอยู่ในสระปรอท กระแสจะถูกปล่อยให้ไหลผ่านสายไฟที่ห้อยลงมาจากเดือยหมุนเหนือแม่เหล็กและถุกจุ่มลงไปในปรอท แม่เหล็กจะส่งแรงที่ขนานที่สัมผัสกับเส้นลวด ทำให้มันหมุนเป็นวงกลมรอบแม่เหล็กได้นานเท่าที่กระแสยังคงอยู่[45]

การทดลองของฟาราเดย์ในปี 1831 เปิดเผยว่าเส้นลวดที่เคลื่อนที่ตั้งฉากกับสนามแม่เหล็กจะพัฒนาความต่างศักย์ขึ้นระหว่างปลายทั้งสอง เมื่อทำการวิเคราะห์กระบวนการนี้ต่อไปจึงพบในสิ่งที่เรียกว่าการเหนี่ยวนำแม่เหล็กไฟฟ้า ซึ่งเปิดโอกาสให้เขาสามารถระบุหลักการที่ปัจจุบันนี้เรียกว่ากฎของการเหนี่ยวนำของฟาราเดย์ ที่ความต่างศักย์ที่ถูกเหนี่ยวนำในวงปิดหนึ่งจะเป็นสัดส่วนกับอัตราการเปลี่ยนแปลงของฟลักซ์แม่เหล็กที่ผ่านลูป การใช้ประโยชน์จากการค้นพบนี้เปิดโอกาสให้เขาในการประดิษฐ์เครื่องกำเนิดไฟฟ้าตัวแรกในปี 1831 ในเครื่องนี้เขาเปลี่ยนพลังงานกลของจานทองแดงที่กำลังหมุนให้เป็นพลังงานไฟฟ้า[45] จานของฟาราเดย์ไม่มีประสิทธิภาพและนำไปใช้เป็นเครื่องกำเนิดไฟฟ้าในทางปฏิบัติไม่ได้ แต่มันแสดงให้เห็นความเป็นไปได้ในการผลิตพลังงานไฟฟ้าโดยพวกที่ติดตามการทำงานของเขา

ไฟฟ้าเคมี

นักฟิสิกซ์ชาวอิตาลี อาเลสซานโดร โวลตากำลังแสดง "แบตเตอรี" ของเขาต่อพระพักตร์ของจักรพรรดิ์ฝรั่งศส นโปเลียน โบนาปาร์ต ในช่วงต้นศตวรรษที่ 19
ดูบทความหลักที่: ไฟฟ้าเคมี

ความสามารถของปฏิกิริยาทางเคมีในการผลิตไฟฟ้า และความสามารถในทางตรงกันข้ามของไฟฟ้าในการผลักดันให้เกิดปฏิกิริยาทางเคมีมีการใช้งานที่หลากหลาย

ไฟฟ้าเคมีได้เป็นส่วนสำคัญในการผลิตไฟฟ้าเสมอ จากสิ่งประดิษฐ์ช่วงเริ่มต้นของเซลล์ซ้อนของโวลตา เซลล์ไฟฟ้าเคมีได้วิวัฒนาการไปเป็นแบตเตอรีชนิดต่าง ๆ มากมาย รวมทั้งเซลล์การชุบด้วยไฟฟ้าและเซลล์อิเล็กโทรไลต์ อะลูมิเนียมสามารถผลิตขึ้นมาได้ในปริมาณมหาศาลก็ด้วยวิธีนี้ และอุปกรณ์เคลื่อนที่จำนวนมากได้รับพลังงานไฟฟ้าจากเซลล์แบบที่ชาร์จไฟใหม่ได้

วงจรไฟฟ้า

ดูบทความหลักที่: วงจรไฟฟ้า
วงจรไฟฟ้าพื้นฐาน แหล่งจ่ายไฟ V ด้านซ้ายขับเคลื่อนกระแส I ไปรอบวงจร นำส่งพลังงานไฟฟ้าให้กับตัวต้านทาน R จากตัวต้านทาน กระแสจะไหลกลับไปที่แหล่งจ่าย เป็นการครบวงจร

วงจรไฟฟ้าเป็นการเชื่อมต่อถึงกันของชิ้นส่วนอุปกรณ์ไฟฟ้าอย่างน้อยหนึ่งตัวแบบที่ว่าประจุไฟฟ้าจะสามารถเดินทางไปตามเส้นทางจนกลับมาที่เดิม (หรือครบวงจร) มักจะปฏิบัติงานที่มีประโยชน์บางอย่าง

ชิ้นส่วนในวงจรไฟฟ้าสามารถเป็นได้หลายรูปแบบ ซึ่งอาจเป็นตัวต้านทาน, ตัวเก็บประจุ, สวิตช์, หม้อแปลงและอิเล็กทรอนิกส์ วงจรอิเล็กทรอนิกส์ประกอบด้วยชิ้นส่วนที่แอคทีฟ มักจะเป็นสารกึ่งตัวนำ และมักจะแสดงพฤติกรรมที่ไม่เป็นเส้นตรง ที่ต้องใช้การวิเคราะห์ที่ซับซ้อน ชิ้นส่วนไฟฟ้าที่ธรรมดาที่สุดจะเป็นพวกที่เรียกว่าพาสซีฟและเชิงเส้น คือในขณะที่พวกมันอาจจัดเก็บพลังงานไว้เป็นการชั่วคราว พวกมันไม่มีแหล่งที่มาของพลังงานในตัวมันเอง และจะแสดงการตอบสนองต่อสิ่งเร้าแบบเชิงเส้น[46]:15–16

ตัวต้านทานบางทีอาจเป็นชิ้นส่วนพาสซีฟที่ง่ายที่สุดของวงจร ตามชื่อของมัน มันต้านกระแสที่ไหลผ่านตัวมัน สลายพลังงานไฟฟ้าไปเป็นพลังงานความร้อน ความต้านทานเป็นผลมาจากการเคลื่อนไหวของประจุผ่านตัวนำ ตัวอย่างเช่นในโลหะ ความต้านทานเกิดเนื่องจากการชนระหว่างอิเล็กตรอนและไอออนเป็นหลัก กฎของโอห์มเป็นกฎพื้นฐานของทฤษฎีวงจร ที่ระบุว่ากระแสที่ไหลผ่านความต้านทานจะเป็นสัดส่วนโดยตรงกับความต่างศักย์ที่ตกคร่อมความต้านทานนั้น ความต้านทานของวัสดุส่วนใหญ่ค่อนข้างคงที่ตามช่วงอุณหภูมิและกระแส วัสดุภายใต้เงื่อนไขเหล่านี้จะถูกเรียกว่าเป็น 'ohmic' หน่วยของความต้านทานเป็นโอห์ม ตั้งชื่อเพื่อเป็นเกียรติแก่จอร์จ โอห์ม และมีสัญลักษณ์เป็นอักษรกรีก Ω ความต้านทาน 1 Ω จะผลิตความต่างศักย์ขนาดหนึ่งโวลต์ในการตอบสนองกับกระแสขนาดหนึ่งแอมป์[46]:30–35

ตัวเก็บประจุได้พัฒนามาจากโถเลย์เดน มันเป็นอุปกรณ์ที่สามารถเก็บประจุได้ เรจัดเก็บประจุจึงเป็นการจัดเก็บพลังงานไฟฟ้าในรูปสนามไฟฟ้าที่เกิดขี้น มันประกอบด้วยแผ่นตัวนำสองแผ่นแยกจากกันโดยชั้นสารไดอิเล็กตริกที่เป็นฉนวนบาง ๆ; ในทางปฏิบัติ แผ่นฟอยล์โลหะบางจะขดม้วนเข้าด้วยกันเพิ่มพื้นที่ผิวต่อหน่วยปริมาตรและดังนั้นจึงเรียกมันว่าคาปาซิแตนซ์ หน่วยของคาปาซิแตนซ์จะเป็นฟารัด ตั้งชื่อตามไมเคิล ฟาราเดย์และมีสัญลักษณ์ F: หนึ่งฟารัดเป็นค่าความสามารถในการเก็บประจุที่จะสร้างความต่างศักย์ขนาดหนึ่งโวลต์เมื่อมันเก็บประจุขนาดหนึ่งคูลอมบ์ ตัวเก็บประจุที่เชื่อมต่อกับแหล่งจ่ายแรงดันขั้นแรกมันจะทำให้เกิดกระแสเป็นมันสะสมประจุ อย่างไรก็ตามกระแสนี้จะสลายตัวไปตามเวลาเมื่อตัวเก็บประจุเริ่มเติมประจุ ในที่สุดก็ตกลงไปที่ศูนย์ ดังนั้นตัวเก็บประจุจะไม่ยอมให้มีกระแสในสถานะที่มั่นคง แต่จะบล็อกมันแทน[46]:216–220

ตัวเหนี่ยวนำก็เป็นตัวนำเช่นกัน มักจะเป็นขดลวด ที่เก็บพลังงานในรูปสนามแม่เหล็กในการตอบสนองกับกระแสทีไหลผ่านตัวมัน เมื่อกระแสเปลี่ยน สนามแม่เหล็กก็เปลี่ยนไปด้วย ทำให้เกิดการเหนี่ยวนำแรงดันไฟฟ้าขึ้นระหว่างปลายของตัวเหนี่ยวนำ แรงดันไฟฟ้าที่ถูกเหนี่ยวนำขึ้นจะเป็นสัดส่วนกับอัตราของการเปลี่ยนแปลงของกระแส หน่วยของการเหนี่ยวนำเป็นเฮนรี ที่ตั้งชื่อตามโจเซฟ เฮนรี เพื่อนร่วมรุ่นของฟาราเดย์ หนึ่งเฮนรีเป็นค่าการเหนี่ยวนำที่จะเหนี่ยวนำให้เกิดความต่างศักย์ขนาดหนึ่งโวลต์ถ้ากระแสผ่านมันเปลี่ยนแปลงในอัตราหนึ่งแอมแปร์ต่อวินาที ลักษณะการทำงานของตัวเหนี่ยวนำจะค่อนข้างตรงข้ามกับตัวเก็บประจุ เพราะมันจะยอมให้กระแสที่ไม่มีการเปลี่ยนแปลงไหลได้อย่างอิสระ แต่ขัดขวางกระแสที่เปลี่ยนแปลงอย่างรวดเร็ว[46]:226–229

กำลังไฟฟ้​​า

ดูบทความหลักที่: พลังงานไฟฟ้า

กำลังไฟฟ้าเป็นอัตราการถ่ายโอนพลังงานไฟฟ้าไปให้วงจรไฟฟ้า มีหน่วย SI เป็นวัตต์ หรือหนึ่งจูลต่อวินาที

กำลังไฟฟ้า เหมือนกำลังเชิงกล เป็นอัตราของการทำงานที่วัดในหน่วยวัตต์และมีสัญญลักษณ์เป็นตัวอักษร P กำลังไฟฟ้ามีค่าเป็นวัตต์ที่ผลิตขึ้นจากกระแสไฟฟ้า I ที่ประกอบด้วยประจุ Q คูลอมบ์ทุก ๆ t วินาทีไหลผ่านความต่างศักย์ไฟฟ้า (แรงดันไฟฟ้า) ความแตกต่างของ V จะเป็น

P = work done per unit time = Q V t = I V {\displaystyle P={\text{work done per unit time}}={\frac {QV}{t}}=IV\,}

การผลิตไฟฟ้ามักจะทำโดยเครื่องกำเนิดไฟฟ้า แต่ก็สามารถผลิตขึ้นจากแหล่งเคมีอีกด้วยเช่นจากแบตเตอรีหรือจากหลากหลายแหล่งที่มาของพลังงาน พลังงานไฟฟ้าโดยทั่วไปจะถูกส่งไปยังบ้านและธุรกิจโดยอุตสาหกรรมการผลิตพลังงานไฟฟ้า กระแสไฟฟ้ามักจะขายเป็นกิโลวัตต์ชั่วโมง (3.6 MJ) ซึ่งเป็นผลคูณของกำลังเป็นกิโลวัตต์คูณด้วยเวลาของการทำงานเป็นชั่วโมง บริษัทไฟฟ้าจะวัดกำลังไฟโดยใช้มิเตอร์ไฟฟ้า ซึ่งจะเก็บการใช้งานโดยของพลังงานไฟฟ้าส่งมอบให้กับลูกค้า แตกต่างจากเชื้อเพลิงฟอสซิล ไฟฟ้าเป็นรูปแบบเอนโทรปีที่ต่ำของพลังงานและสามารถถูกแปลงให้เป็นการเคลื่อนไหวหรือรูปแบบอื่นของพลังงานที่มีประสิทธิภาพสูง[47]

อิเล็กทรอนิกส์

ดูบทความหลักที่: อิเล็กทรอนิกส์
ชิ้นส่วนอิเล็กทรอนิกส์แบบวางบนผิว

อิเล็กทรอนิกส์จะเกี่ยวข้องกับวงจรไฟฟ้าที่ประกอบด้วยชิ้นส่วนไฟฟ้าแบบแอคทีฟเช่นหลอดสูญญากาศ, ทรานซิสเตอร์, ไดโอด, วงจรรวม, และเทคโนโลยีเชื่อมต่อระหว่างกันแบบพาสซีฟที่เกี่ยวข้อง พฤฒิกรรมที่ไม่เป็นเชิงเส้นของชิ้นส่วนแอคทีฟและความสามารถของมันในการควบคุมการไหลของอิเล็กตรอนทำให้ต้องมีการขยายสัญญาณที่อ่อนแอและอิเล็กทรอนิกส์ถูกใช้กันอย่างแพร่หลายในการประมวลผลข้อมูล, การสื่อสารโทรคมนาคม, และการประมวลผลสัญญาณ ความสามารถของอุปกรณ์อิเล็กทรอนิกส์ที่จะทำหน้าที่ เป็นสวิตช์ทำให้การประมวลผลข้อมูลดิจิตอลมีความเป็นไปได้ เทคโนโลยีเชื่อมต่อระหว่างกันเช่นแผงวงจร, เทคโนโลยีการบรรจุภัณฑ์แบบอิเล็กทรอนิคส์, และรูปแบบหลากหลายอื่นของโครงสร้างพื้นฐานการสื่อสารเติมเต็มหน้าที่การทำงานของวงจรและเปลี่ยนส่วนประกอบผสมให้เป็นระบบการทำงานปกติ

วันนี้อุปกรณ์อิเล็กทรอนิกส์ส่วนใหญ่จะใช้ชิ้นส่วนสารกึ่งตัวนำเพื่อการควบคุมอิเล็กตรอน การศึกษาอุปกรณ์สารกึ่งตัวนำและเทคโนโลยีที่เกี่ยวข้องได้รับการพิจารณาว่าเป็นสาขาหนึ่งของฟิสิกส์สถานะของแข็ง ในขณะที่การออกแบบและสร้างวงจรอิเล็กทรอนิกส์ในการแก้ปัญหาที่เกิดตอนปฏิบัติจะมาภายใต้วิศวกรรมอิเล็กทรอนิกส์

คลื่นแม่เหล็กไฟฟ้า

ดูบทความหลักที่: คลื่นแม่เหล็กไฟฟ้า

งานของฟาราเดย์และแอมแปร์แสดงให้เห็นว่าสนามแม่เหล็กที่แปรตามเวลาจะทำหน้าที่เป็นแหล่งที่มาของสนามไฟฟ้า และสนามไฟฟ้าที่แปรตามเวลาก็เป็นแหล่งที่มาของสนามแม่เหล็ก ดังนั้นเมื่อทั้งสองใดสนามหนึ่งมีการเปลี่ยนแปลง อีกสนามหนึ่งก็จำเป็นที่จะถูกเหนี่ยวนำขึ้น[17]:696–700 ปรากฏการณ์เช่นนี้จะมีคุณสมบัติของคลื่น และจะถูกเรียกโดยธรรมชาติว่าเป็นคลื่นแม่เหล็กไฟฟ้า คลื่นแม่เหล็กไฟฟ้าถูกนำมาวิเคราะห์ในทางทฤษฎีโดยเจมส์ เคิร์ก แมกส์เวลล์ ในปี 1864 แมกซ์เวลล์ได้พัฒนาชุดของสมการที่อาจอธิบายอย่างกำกวมถึงความสัมพันธ์ระหว่างกันของสนามไฟฟ้า, สนามแม่เหล็ก, ประจุไฟฟ้า, และกระแสไฟฟ้า นอกจากนี้เขาสามารถพิสูจน์ได้ว่าคลื่นเช่นนั้นจำเป็นที่จะเดินทางด้วยความเร็วของแสง ดังนั้นตัวแสงเองเป็นรูปแบบหนึ่งของรังสีแม่เหล็กไฟฟ้า กฎของแมกซ์เวล ซึ่ง รวมแสง, สนาม, และประจุโหลดเป็นหนึ่งเดียวเป็นหนึ่งของเหตุการณ์สำคัญที่สุดของฟิสิกส์ในทางทฤษฎี[17]:696–700

ดังนั้นงานของนักวิจัยหลายคนได้เปิดโอกาสให้มีการใช้อุปกรณ์อิเล็กทรอนิกส์ในการแปลงสัญญาณให้มีกระแสสั่นความถี่สูง และโดยใช้ตัวนำรูปทรงที่เหมาะสม ไฟฟ้าจะยอมให้มีการส่งและการรับสัญญาณเหล่านี้ผ่านทางคลื่นวิทยุในระยะทางที่ไกลมาก

ใกล้เคียง

แหล่งที่มา

WikiPedia: ไฟฟ้า http://www.arcsuppressiontechnologies.com/arc-supp... http://www.indexmundi.com/china/electricity_consum... http://www.latimes.com/news/opinion/la-oe-das15dec... http://query.nytimes.com/gst/fullpage.html?res=9C0... http://encyclopedia2.thefreedictionary.com/solid+s... http://glwww.mst.dk/udgiv/Publications/1997/87-781... http://physicsed.buffalostate.edu/pubs/PHY690/Sael... http://adsabs.harvard.edu/abs/1887AnP...267..983H http://adsabs.harvard.edu/abs/1985STIN...8619754M http://adsabs.harvard.edu/abs/2007PhTea..45..104S