การประยุกต์ใช้ ของ ฟังก์ชันพื้นและฟังก์ชันเพดาน

ภาคเศษส่วน

ภาคเศษส่วน (fractional part) เป็นฟังก์ชันฟันเลื่อย เขียนแทนด้วย {x} สำหรับทุกจำนวนจริง x ซึ่งนิยามโดยสูตรนี้ [17]

{ x } = x − ⌊ x ⌋ {\displaystyle \{x\}=x-\lfloor x\rfloor }

ภาคเศษส่วนของ x จะมีค่าอยู่ระหว่าง 0 กับ 1 นั่นคือ

0 ≤ { x } < 1 {\displaystyle 0\leq \{x\}<1}

ถ้า x เป็นจำนวนบวก ฟังก์ชันพื้นของ x สามารถสรุปได้อย่างง่ายว่า เป็นค่า x ที่ตัดตัวเลขหลังจุดทศนิยมออกไป ดังนั้นภาคเศษส่วนของ x ก็คือค่า x ที่ตัดตัวเลขหน้าจุดทศนิยมออกไป

มอดุโล

การดำเนินการมอดุโล (modulo) เขียนแทนด้วย x mod y สำหรับจำนวนจริง x และ y ทบ.เศษเหลือจีนโต๋ตูดดำโดยที่ y ≠ 0 นิยามโดยสูตรนี้

x mod y = x − y ⌊ x y ⌋ {\displaystyle x\,{\bmod {\,}}y=x-y\left\lfloor {\frac {x}{y}}\right\rfloor }

ผลลัพธ์ของ x mod y จะมีค่าอยู่ระหว่าง 0 ถึง y นั่นคือ

y > 0 ⇒ 0 ≤ x mod y < y {\displaystyle y>0\Rightarrow 0\leq x\,{\bmod {\,}}y<y} y < 0 ⇒ 0 ≥ x mod y > y {\displaystyle y<0\Rightarrow 0\geq x\,{\bmod {\,}}y>y}

ถ้า x เป็นจำนวนเต็มและ y เป็นจำนวนเต็มบวก

( x mod y ) ≡ x ( mod y ) {\displaystyle (x\,{\bmod {\,}}y)\equiv x{\pmod {y}}}

ฟังก์ชัน x mod y โดยที่ y เป็นค่าคงตัว จะเป็นฟังก์ชันฟันเลื่อยเช่นกัน

การแลกเปลี่ยนกำลังสอง

การพิสูจน์การแลกเปลี่ยนกำลังสอง (quadratic reciprocity) ของเกาส์ครั้งที่สาม ซึ่งปรับปรุงแก้ไขโดยไอเซนสไตน์ (Ferdinand Eisenstein) มีสองขั้นตอนพื้นฐานดังนี้ [18][19]

กำหนดให้ p และ q เป็นจำนวนเฉพาะที่เป็นจำนวนคี่คนละตัวกัน และกำหนดให้

m = p − 1 2 , n = q − 1 2 {\displaystyle m={\frac {p-1}{2}},\;\;n={\frac {q-1}{2}}}

ขั้นตอนแรก สัญลักษณ์เลอช็องดร์ถูกนำมาเขียนอธิบายด้วยบทตั้งของเกาส์

( q p ) = ( − 1 ) ⌊ q p ⌋ + ⌊ 2 q p ⌋ + ⋯ + ⌊ m q p ⌋ {\displaystyle \left({\frac {q}{p}}\right)=(-1)^{\left\lfloor {\frac {q}{p}}\right\rfloor +\left\lfloor {\frac {2q}{p}}\right\rfloor +\dots +\left\lfloor {\frac {mq}{p}}\right\rfloor }} ( p q ) = ( − 1 ) ⌊ p q ⌋ + ⌊ 2 p q ⌋ + ⋯ + ⌊ n p q ⌋ {\displaystyle \left({\frac {p}{q}}\right)=(-1)^{\left\lfloor {\frac {p}{q}}\right\rfloor +\left\lfloor {\frac {2p}{q}}\right\rfloor +\dots +\left\lfloor {\frac {np}{q}}\right\rfloor }}

ขั้นตอนที่สองคือใช้การให้เหตุผลทางเรขาคณิตเพื่อที่จะแสดงว่า

⌊ q p ⌋ + ⌊ 2 q p ⌋ + ⋯ + ⌊ m q p ⌋ + ⌊ p q ⌋ + ⌊ 2 p q ⌋ + ⋯ + ⌊ n p q ⌋ = m n {\displaystyle \left\lfloor {\frac {q}{p}}\right\rfloor +\left\lfloor {\frac {2q}{p}}\right\rfloor +\dots +\left\lfloor {\frac {mq}{p}}\right\rfloor +\left\lfloor {\frac {p}{q}}\right\rfloor +\left\lfloor {\frac {2p}{q}}\right\rfloor +\dots +\left\lfloor {\frac {np}{q}}\right\rfloor =mn}

จากนั้นจึงเอาสูตรทั้งสองมารวมกัน ทำให้เกิดการแลกเปลี่ยนกำลังสอง

( p q ) ( q p ) = ( − 1 ) m n = ( − 1 ) p − 1 2 q − 1 2 {\displaystyle \left({\frac {p}{q}}\right)\left({\frac {q}{p}}\right)=(-1)^{mn}=(-1)^{{\frac {p-1}{2}}{\frac {q-1}{2}}}}

สูตรต่อไปนี้เป็นการใช้ฟังก์ชันพื้นเพื่อแสดงลักษณะกำลังสองของจำนวนขนาดเล็ก มอดุโลกับจำนวนเฉพาะ p [20]

( 2 p ) = ( − 1 ) ⌊ p + 1 4 ⌋ {\displaystyle \left({\frac {2}{p}}\right)=(-1)^{\left\lfloor {\frac {p+1}{4}}\right\rfloor }} ( 3 p ) = ( − 1 ) ⌊ p + 1 6 ⌋ {\displaystyle \left({\frac {3}{p}}\right)=(-1)^{\left\lfloor {\frac {p+1}{6}}\right\rfloor }}

การปัดเศษ

ดูบทความหลักที่: การปัดเศษ

การปัดเศษจำนวนบวก x ไปยังจำนวนเต็มที่อยู่ใกล้ที่สุด จะใช้วิธีการปัดเศษโดยครึ่งหนึ่งให้ปัดขึ้นโดยปกติ สามารถเขียนได้เป็น ⌊ x + 0.5 ⌋ {\displaystyle \lfloor x+0.5\rfloor }

จำนวนหลัก

จำนวนหลักของจำนวนเต็มบวก k ในฐาน b คำนวณได้จาก ⌊ log b ⁡ k ⌋ + 1 {\displaystyle \lfloor \log _{b}{k}\rfloor +1}

ตัวประกอบของแฟกทอเรียล

กำหนดให้ n เป็นจำนวนเต็มบวกและ p เป็นจำนวนเฉพาะ (ซึ่งเป็นบวกเช่นกัน) กำลังสูงสุดของ p ที่สามารถหาร n! (แฟกทอเรียลของ n) ได้ลงตัว คำนวณได้จากสูตรนี้ [21]

⌊ n p ⌋ + ⌊ n p 2 ⌋ + ⌊ n p 3 ⌋ + … {\displaystyle \left\lfloor {\frac {n}{p}}\right\rfloor +\left\lfloor {\frac {n}{p^{2}}}\right\rfloor +\left\lfloor {\frac {n}{p^{3}}}\right\rfloor +\dots }

ผลรวมของอนุกรมนี้จำกัด เนื่องจากฟังก์ชันพื้นจะให้ผลลัพธ์เป็นศูนย์เมื่อ pk > n

ลำดับบีตตี

ลำดับบีตตี (Beatty sequence) ได้แสดงไว้ว่าจำนวนอตรรกยะที่เป็นบวกทุกจำนวน เมื่อผ่านฟังก์ชันพื้นแล้วจะเป็นส่วนหนึ่งของจำนวนธรรมชาติซึ่งเป็นสมาชิกของลำดับสองลำดับคู่กัน [22]

ค่าคงตัวออยเลอร์-แมสเชโรนี

สูตรที่ใช้แสดงค่าคงตัวออยเลอร์-แมสเชโรนี γ = 0.57721 56649 … ที่เกี่ยวกับฟังก์ชันพื้นและเพดาน ตัวอย่างเช่น [23]

γ = ∫ 1 ∞ ( 1 ⌊ x ⌋ − 1 x ) d x {\displaystyle \gamma =\int _{1}^{\infty }\left({1 \over \lfloor x\rfloor }-{1 \over x}\right)\,dx} γ = lim n → ∞ 1 n ∑ k = 1 n ( ⌈ n k ⌉ − n k ) {\displaystyle \gamma =\lim _{n\to \infty }{\frac {1}{n}}\,\sum _{k=1}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right)} γ = ∑ k = 2 ∞ ( − 1 ) k ⌊ log 2 ⁡ k ⌋ k = 1 2 − 1 3 + 2 ( 1 4 − 1 5 + 1 6 − 1 7 ) + 3 ( 1 8 − ⋯ − 1 15 ) + … {\displaystyle \gamma =\sum _{k=2}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k}}={\tfrac {1}{2}}-{\tfrac {1}{3}}+2\left({\tfrac {1}{4}}-{\tfrac {1}{5}}+{\tfrac {1}{6}}-{\tfrac {1}{7}}\right)+3\left({\tfrac {1}{8}}-\dots -{\tfrac {1}{15}}\right)+\dots }

ฟังก์ชันซีตาของรีมันน์

ฟังก์ชันภาคเศษส่วนปรากฏในการแจกแจงปริพันธ์ของฟังก์ชันซีตาของรีมันน์ ซึ่งสามารถพิสูจน์ได้อย่างตรงไปตรงมาด้วยการหาปริพันธ์โดยการแยกส่วน [24] โดยสมมติว่า φ (x) คือฟังก์ชันใด ๆ ที่มีความต่อเนื่องและหาอนุพันธ์ได้ในช่วงปิด [a, b]

∑ a < n ≤ b ϕ ( n ) = ∫ a b ϕ ( x ) d x + ∫ a b ( { x } − 1 2 ) ϕ ′ ( x ) d x + ( { a } − 1 2 ) ϕ ( a ) − ( { b } − 1 2 ) ϕ ( b ) {\displaystyle {\sum _{a<n\leq b}\phi (n)=\int _{a}^{b}\phi (x)dx+\int _{a}^{b}\left(\{x\}-{\tfrac {1}{2}}\right)\phi '(x)dx+\left(\{a\}-{\tfrac {1}{2}}\right)\phi (a)-\left(\{b\}-{\tfrac {1}{2}}\right)\phi (b)}}

กำหนดให้ φ (n) = n−s สำหรับส่วนจริงของ s ที่มากกว่า 1 และกำหนดให้ a, b เป็นจำนวนเต็ม ซึ่ง b มีค่าเข้าใกล้อนันต์ จะได้

ζ ( s ) = s ∫ 1 ∞ 1 2 − { x } x s + 1 d x + 1 s − 1 + 1 2 {\displaystyle \zeta (s)=s\int _{1}^{\infty }{\frac {{\frac {1}{2}}-\{x\}}{x^{s+1}}}\;dx+{\frac {1}{s-1}}+{\frac {1}{2}}}

สูตรนี้สามารถใช้ได้กับทุกค่าของ s ที่มีส่วนจริงมากกว่า −1 (ยกเว้นเมื่อ s = 1 เพราะจุดนั้นเป็นโพล) และเมื่อรวมเข้ากับการกระจายฟูรีเยของ {x} จะทำให้สามารถใช้ฟังก์ชันซีตาได้กับทั้งระนาบเชิงซ้อน และใช้สำหรับพิสูจน์สมการเชิงฟังก์ชัน [25]

สำหรับ s = σ + i t ภายในแถบวิกฤต (critical strip) เช่น 0 < σ < 1 Balthasar van der Pol ได้ใช้สูตรนี้เพื่อสร้างคอมพิวเตอร์แอนะล็อกสำหรับคำนวณรากของฟังก์ชันซีตาเมื่อ ค.ศ. 1974 [26]

ζ ( s ) = s ∫ − ∞ ∞ e − σ ω ( ⌊ e ω ⌋ − e ω ) e − i t ω d ω {\displaystyle \zeta (s)=s\int _{-\infty }^{\infty }e^{-\sigma \omega }(\lfloor e^{\omega }\rfloor -e^{\omega })e^{-it\omega }\,d\omega }

สูตรเกี่ยวกับจำนวนเฉพาะ

n จะเป็นจำนวนเฉพาะ ก็ต่อเมื่อ [27]

∑ m = 1 ∞ ( ⌊ n m ⌋ − ⌊ n − 1 m ⌋ ) = 2 {\displaystyle \sum _{m=1}^{\infty }\left(\left\lfloor {\frac {n}{m}}\right\rfloor -\left\lfloor {\frac {n-1}{m}}\right\rfloor \right)=2}

กำหนดให้ r > 1 เป็นจำนวนเต็ม, pn คือจำนวนเฉพาะตัวที่ n และ α ซึ่งนิยามโดย

α = ∑ m = 1 ∞ p m r − m 2 {\displaystyle \alpha =\sum _{m=1}^{\infty }p_{m}r^{-m^{2}}}

เราจะได้ว่า [28]

p n = ⌊ r n 2 α ⌋ − r 2 n − 1 ⌊ r ( n − 1 ) 2 α ⌋ {\displaystyle p_{n}=\left\lfloor r^{n^{2}}\alpha \right\rfloor -r^{2n-1}\left\lfloor r^{(n-1)^{2}}\alpha \right\rfloor }

มีจำนวน θ = 1.3064… ซึ่งมีสมบัติว่า จำนวนทั้งหมดในลำดับ ⌊ θ 3 ⌋ , ⌊ θ 9 ⌋ , ⌊ θ 27 ⌋ , … {\displaystyle \left\lfloor \theta ^{3}\right\rfloor ,\left\lfloor \theta ^{9}\right\rfloor ,\left\lfloor \theta ^{27}\right\rfloor ,\dots } เป็นจำนวนเฉพาะ [29]

และมีจำนวน ω = 1.9287800… ซึ่งมีสมบัติว่า จำนวนทั้งหมดในลำดับ ⌊ 2 ω ⌋ , ⌊ 2 2 ω ⌋ , ⌊ 2 2 2 ω ⌋ , … {\displaystyle \left\lfloor 2^{\omega }\right\rfloor ,\left\lfloor 2^{2^{\omega }}\right\rfloor ,\left\lfloor 2^{2^{2^{\omega }}}\right\rfloor ,\dots } เป็นจำนวนเฉพาะ [30]

π (x) เป็นฟังก์ชันนับจำนวนเฉพาะ คือนับว่ามีจำนวนเฉพาะอยู่เท่าไรที่มีค่าน้อยกว่าหรือเท่ากับ x ซึ่งเป็นการลดทอนมาจากทฤษฎีบทของวิลสันที่ว่า [31]

π ( n ) = ∑ j = 2 n ⌊ ( j − 1 ) ! + 1 j − ⌊ ( j − 1 ) ! j ⌋ ⌋ {\displaystyle \pi (n)=\sum _{j=2}^{n}\left\lfloor {\frac {(j-1)!+1}{j}}-\left\lfloor {\frac {(j-1)!}{j}}\right\rfloor \right\rfloor }

และถ้าหาก n ≥ 2 จะได้ [32]

π ( n ) = ∑ j = 2 n ⌊ 1 ∑ k = 2 j ⌊ ⌊ j k ⌋ k j ⌋ ⌋ {\displaystyle \pi (n)=\sum _{j=2}^{n}\left\lfloor {\frac {1}{\sum _{k=2}^{j}\left\lfloor \left\lfloor {\frac {j}{k}}\right\rfloor {\frac {k}{j}}\right\rfloor }}\right\rfloor }

แต่สูตรในส่วนนี้ที่กล่าวมาทั้งหมด ไม่มีการนำไปใช้จริงในทางปฏิบัติ

ข้อปัญหาที่แก้ได้

รามานุจันได้ส่งข้อปัญหาที่เกี่ยวกับฟังก์ชันพื้นเหล่านี้ลงใน Journal of the Indian Mathematical Society [33]

ถ้า n เป็นจำนวนเต็มบวก จงพิสูจน์ว่า

  1. ⌊ n 3 ⌋ + ⌊ n + 2 6 ⌋ + ⌊ n + 4 6 ⌋ = ⌊ n 2 ⌋ + ⌊ n + 3 6 ⌋ {\displaystyle \left\lfloor {\tfrac {n}{3}}\right\rfloor +\left\lfloor {\tfrac {n+2}{6}}\right\rfloor +\left\lfloor {\tfrac {n+4}{6}}\right\rfloor =\left\lfloor {\tfrac {n}{2}}\right\rfloor +\left\lfloor {\tfrac {n+3}{6}}\right\rfloor }
  2. ⌊ 1 2 + n + 1 2 ⌋ = ⌊ 1 2 + n + 1 4 ⌋ {\displaystyle \left\lfloor {\tfrac {1}{2}}+{\sqrt {n+{\tfrac {1}{2}}}}\right\rfloor =\left\lfloor {\tfrac {1}{2}}+{\sqrt {n+{\tfrac {1}{4}}}}\right\rfloor }
  3. ⌊ n + n + 1 ⌋ = ⌊ 4 n + 2 ⌋ {\displaystyle \left\lfloor {\sqrt {n}}+{\sqrt {n+1}}\right\rfloor =\left\lfloor {\sqrt {4n+2}}\right\rfloor }

ข้อปัญหาที่แก้ไม่ได้

จากการศึกษาข้อปัญหาของวาริง ได้นำไปสู่ปัญหาที่ยังไม่สามารถแก้ได้จนปัจจุบัน นั่นคือ

จริงหรือไม่ที่จำนวนเต็มบวก k ใด ๆ โดยที่ k ≥ 6 ทำให้เงื่อนไขนี้เป็นจริง [34]

3 k − 2 k ⌊ ( 3 2 ) k ⌋ > 2 k − ⌊ ( 3 2 ) k ⌋ − 2 {\displaystyle 3^{k}-2^{k}\left\lfloor \left({\tfrac {3}{2}}\right)^{k}\right\rfloor >2^{k}-\left\lfloor \left({\tfrac {3}{2}}\right)^{k}\right\rfloor -2}

เคิร์ต มาห์เลอร์ เคยพิสูจน์และสรุปว่า มีเพียงจำนวนจำกัดจำนวนหนึ่งเท่านั้นสำหรับ k ที่ตรงตามเงื่อนไขข้างต้น นอกเหนือจากนั้นยังไม่สามารถสรุปได้ [35]

ใกล้เคียง

ฟังก์ ฟังก์ชันพื้นและฟังก์ชันเพดาน ฟังก์ชัน (คณิตศาสตร์) ฟังก์ชันเลขชี้กำลัง ฟังก์ชันตรีโกณมิติ ฟังก์ชันแกมมา ฟังก์ชันนับจำนวนเฉพาะ ฟังก์ชันเลียปูนอฟ ฟังก์ชันแฮช ฟังก์เมทัล