วิธีการทำ ของ รากที่สองของสอง

นักคณิตศาสตร์ได้ค้นหาวิธีการคำนวณรากที่สองของสองในรูปแบบต่างๆ กันเพื่อเขียนค่าประมาณใกล้เคียงของรากที่สองของสองออกมาในรูปของอัตราส่วนของจำนวนเต็มหรือเลขทศนิยม หนึ่งในวิธีการที่ถือว่าเป็นเบื้องต้นที่สุดคือขั้นตอนวิธีของบาบิโลเนียเพื่อคำนวณรากที่สองของสอง[5] ซึ่งถือเป็นพื้นฐานการคำนวณของคอมพิวเตอร์และเครื่องคิดเลข ขั้นตอนวิธีเพื่อหารากที่สอง (อาจใช้เพื่อหารากที่สองของจำนวนใดๆ ไม่เฉพาะของสอง) ดังกล่าวสามารถทำได้ดังนี้

  • เลือก a0 >0 ค่า a0 ที่เลือกนี้จะมีผลกระทบต่อความเร็วในการลู่เข้าสู่ค่าของ √2 ในระดับความแม่นยำหนึ่งเท่านั้น
  • ใช้ฟังก์ชันเรียกตัวเองเพื่อคำนวณ a1, a2, a3, ..., an
a n + 1 = a n + 2 a n 2 = a n 2 + 1 a n {\displaystyle a_{n+1}={\frac {a_{n}+{\frac {2}{a_{n}}}}{2}}={\frac {a_{n}}{2}}+{\frac {1}{a_{n}}}}
  • ตัวอย่างการคำนวณโดยเลือก a0=1 ได้ผลดังนี้
a0=1
a1=3/2=1.5
a2=17/12=1.416...
a3=577/408=1.414215...
a4=665857/470832=1.4142135623746...

ในปี ค.ศ.1997 ทีมของยาซูมาสะ คานาดะได้คำนวณค่าของ √2 แม่นยำถึงทศนิยมตำแหน่งที่ 137,438,953,444

เดือนกุมภาพันธ์ปี ค.ศ.2006 ความท้าทายในการคำนวณค่าของ √2 ได้ถูกทำให้หมดไปด้วยการใช้คอมพิวเตอร์บ้าน ชิเกรุ คอนโดได้คำนวณค่าประมาณใกล้เคียงของ √2 ถึงทศนิยมตำแหน่งที่ 200,000,000,000 ในเวลา 13 วัน 14 ชั่วโมง โดยใช้เครื่องคอมพิวเตอร์ส่วนบุคคลขนาด 3.6 GHz และหน่วยความจำ 16 Gb[6]

อย่างไรก็ดี เป็นที่ยอมรับกันทั่วไปว่าในจำนวนค่าคงตัวอตรรกยะทางคณิตศาสตร์ต่างๆ ที่ถือเป็นความท้าทายต่อนักคณิตศาสตร์ที่จะเขียนในรูปของทศนิยมไม่รู้จบ ค่า π ดูจะเป็นจำนวนที่ถูกประมาณได้แม่นยำละเอียดสูงสุด[7]