อ้างอิง ของ สมองมนุษย์

  1. "Cerebrum Etymology". dictionary.com. Archived from the original on 2015-10-24. สืบค้นเมื่อ 2015-10-24.
  2. "Encephalo- Etymology". Online Etymology Dictionary. Archived from the original on 2017-10-02. สืบค้นเมื่อ 2015-10-24.
  3. DeLisi, Matt (2014). "Low Self-Control Is a Brain-Based Disorder": 172–183. doi:10.4135/9781483349114.n11.
  4. 1 2 "Executive functions". 2013. PMID 23020641. Core EFs are inhibition [response inhibition (self-control—resisting temptations and resisting acting impulsively) and interference control (selective attention and cognitive inhibition)], working memory, and cognitive flexibility (including creatively thinking “outside the box,” seeing anything from different perspectives, and quickly and flexibly adapting to changed circumstances). ... Self-control is the aspect of inhibitory control that involves control over one’s behavior and control over one’s emotions in the service of controlling one’s behavior. Self-control is about resisting temptations and not acting impulsively. The temptation resisted might be to indulge in pleasures when one should not (e.g., to indulge in a romantic fling if you are married or to eat sweets if you are trying to lose weight), to overindulge, or to stray from the straight and narrow (e.g., to cheat or steal). Or the temptation might be to impulsively react (e.g., reflexively striking back at someone who has hurt your feelings) or to do or take what you want without regard for social norms (e.g., butting in line or grabbing another child’s toy). Another aspect of self-control is having the discipline to stay on task despite distractions and completing a task despite temptations to give up, to move on to more interesting work, or to have a good time instead. This involves making yourself do something or keep at something though you would rather be doing something else. It is related to the final aspect of self-control—delaying gratification (Mischel et al. 1989) —making yourself forgo an immediate pleasure for a greater reward later (often termed delay discounting by neuroscientists and learning theorists; Louie & Glimcher 2010, Rachlin et al. 1991). Without the discipline to complete what one started and delay gratification, no one would ever complete a long, time-consuming task such as writing a dissertation, running a marathon, or starting a new business.
  5. "The relationship between self control deficits and hoarding: A multimethod investigation across three samples". 2013. doi:10.1037/a0029760. Self-control is the capacity to exert control over one's behavior and is necessary for directing personal behavior toward achieving goals
  6. "The sensory circumventricular organs: Brain targets for circulating signals controlling ingestive behavior". 2007. doi:10.1016/j.physbeh.2007.04.003.
  7. "Sensory circumventricular organs: Central roles in integrated autonomic regulation". 2004. doi:10.1016/j.regpep.2003.09.004.
  8. "The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: The former opens to the portal blood and the latter to the cerebrospinal fluid". 2010. doi:10.1016/j.peptides.2010.01.003.
  9. "Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain". 2012. doi:10.1007/s00441-012-1421-9.
  10. Fan, X; Markram, H (2019). "A Brief History of Simulation Neuroscience". Front Neuroinform. 13: 32. doi:10.3389/fninf.2019.00032. PMC 6513977 Check |pmc= value (help). PMID 31133838.
  11. Parent, A.; Carpenter, M.B. (1995). "Ch. 1". Carpenter's Human Neuroanatomy. Williams & Wilkins. ISBN 978-0-683-06752-1.
  12. 1 2 Bigos, K.L.; Hariri, A.; Weinberger, D. (2015). Neuroimaging Genetics: Principles and Practices. Oxford University Press. p. 157. ISBN 978-0199920228.
  13. Cosgrove, K.P.; Mazure, C.M.; Staley, J.K. (2007). "Evolving knowledge of sex differences in brain structure, function, and chemistry". Biol Psychiatry. 62 (8): 847–855. doi:10.1016/j.biopsych.2007.03.001. PMC 2711771. PMID 17544382.
  14. Gur, R.C.; Turetsky, B.I.; Matsui, M.; Yan, M.; Bilker, W.; Hughett, P.; Gur, R.E. (1999). "Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance". The Journal of Neuroscience. 19 (10): 4065–4072. doi:10.1523/JNEUROSCI.19-10-04065.1999. PMID 10234034.
  15. 1 2 3 4 5 Gray's Anatomy 2008, p. 227-229.
  16. 1 2 Gray's Anatomy 2008, p. 335-7.
  17. 1 2 Ribas, G. C. (2010). "The cerebral sulci and gyri". Neurosurgical Focus. 28 (2): 7. doi:10.3171/2009.11.FOCUS09245. PMID 20121437.
  18. Frigeri, T.; Paglioli, E.; De Oliveira, E.; Rhoton Jr, A. L. (2015). "Microsurgical anatomy of the central lobe". Journal of Neurosurgery. 122 (3): 483–98. doi:10.3171/2014.11.JNS14315. PMID 25555079.
  19. "space, subarachnoid", ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑ ฉบับ ๒๕๔๕, (แพทยศาสตร์) ช่องใต้เยื่ออะแร็กนอยด์
  20. Purves 2012, p. 724.
  21. 1 2 Cipolla, M.J. (2009-01-01). Anatomy and Ultrastructure. Morgan & Claypool Life Sciences. Archived from the original on 2017-10-01.
  22. "A Surgeon's-Eye View of the Brain". NPR.org. Archived from the original on 2017-11-07.
  23. Kolb & Whishaw (2003). Fundamentals of Human Neuropsychology. p. 49.CS1 maint: Uses authors parameter (link)
  24. Sampaio-Baptista, C; Johansen-Berg, H (2017-12-20). "White Matter Plasticity in the Adult Brain". Neuron. 96 (6): 1239–1251. doi:10.1016/j.neuron.2017.11.026. PMC 5766826. PMID 29268094.
  25. Davey, G. (2011). Applied Psychology. John Wiley & Sons. p. 153. ISBN 978-1444331219.
  26. Holloway, Ralph L.; Broadfield, Douglas C; Yuan, Michael S (2004). The Human Fossil Record. Volume Three: Brain Endocasts--The Paleoneurological Evidence. Wiley-Liss. ISBN 0-471-41823-4.CS1 maint: Uses authors parameter (link)
  27. Arsava, E. Y.; Arsava, E. M.; Oguz, K. K.; Topcuoglu, M. A. (2019). "Occipital petalia as a predictive imaging sign for transverse sinus dominance". Neurological Research. 41 (4): 306–311. doi:10.1080/01616412.2018.1560643. PMID 30601110.
  28. 1 2 Ackerman, S. (1992). Discovering the brain. Washington, D.C.: National Academy Press. pp. 22–25. ISBN 978-0-309-04529-2.
  29. Larsen 2001, pp. 455-456.
  30. Kandel, E.R.; Schwartz, J.H.; Jessel T.M. (2000). Principles of Neural Science. McGraw-Hill Professional. p. 324. ISBN 978-0-8385-7701-1.
  31. Guyton & Hall 2011, p. 574.
  32. Guyton & Hall 2011, p. 667.
  33. Tortora, Gerard J; Derrickson, Bryan (2011). Principles of anatomy and physiology (12th ed.). Hoboken, NJ: Wiley. p. 519. ISBN 9780470646083.
  34. 1 2 3 Freberg, L. (2009). Discovering Biological Psychology. Cengage Learning. pp. 44–46. ISBN 978-0547177793.
  35. 1 2 Kolb, B.; Whishaw, I. (2009). Fundamentals of Human Neuropsychology. Macmillan. pp. 73–75. ISBN 978-0716795865.
  36. Pocock 2006, p. 64.
  37. 1 2 Purves 2012, p. 399.
  38. Gray's Anatomy 2008, p. 325-6.
  39. Goll, Y.; Atlan, G.; Citri, A. (August 2015). "Attention: the claustrum". Trends in Neurosciences. 38 (8): 486–95. doi:10.1016/j.tins.2015.05.006. PMID 26116988.
  40. Goard, M.; Dan, Y. (2009-10-04). "Basal forebrain activation enhances cortical coding of natural scenes". Nature Neuroscience. 12 (11): 1444–1449. doi:10.1038/nn.2402. PMC 3576925. PMID 19801988.
  41. Guyton & Hall 2011, p. 699.
  42. 1 2 3 Gray's Anatomy 2008, p. 298.
  43. Netter, F. (2014). Atlas of Human Anatomy Including Student Consult Interactive Ancillaries and Guides (6th ed.). Philadelphia, Penn.: W B Saunders Co. p. 114. ISBN 978-1-4557-0418-7.
  44. 1 2 Gray's Anatomy 2008, p. 297.
  45. Guyton & Hall 2011, pp. 698-9.
  46. Squire 2013, pp. 761-763.
  47. clivus. Dorland's Illustrated Medical Dictionary (32nd ed.). USA: Elsevier Saunders. 2012. p. 373. ISBN 978-1-4160-6257-8. [L.‘‘slope’’] [TA] a bony surface in the posterior cranial fossa, sloping superiorly from the foramen magnum to the dorsum sellae, the inferior part being formed by a portion of the basilar part of the occipital bone and the superior part by a surface of the body of the sphenoid bone. clival adj
  48. 1 2 3 4 5 6 Gray's Anatomy 2008, p. 275.
  49. Guyton & Hall 2011, p. 691.
  50. Purves 2012, p. 377.
  51. Nolte, J (2002). The Human Brain (5th ed.). Missouri: Mosby. p. 527. ISBN 0-323-01320-1.CS1 maint: Uses authors parameter (link)
  52. 1 2 Azevedo, F.; และคณะ (2009-04-10). "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain". The Journal of Comparative Neurology. 513 (5): 532–541. doi:10.1002/cne.21974. PMID 19226510. despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 ± 8.1 billion NeuN-positive cells (“neurons”) and 84.6 ± 9.8 billion NeuN-negative (“nonneuronal”) cells.
  53. Verkhratsky, Alexei; Butt, Arthur M. (2011). Glial Physiology and Pathophysiology. John Wiley and Sons. ISBN 9780470978535.
  54. Komine, O; Nagaoka, M; Watase, K; Gutmann, DH; Tanigaki, K; Honjo, T; Radtke, F; Saito, T; Chiba, S; Tanaka, K (November 2007), "The monolayer formation of Bergmann glial cells is regulated by Notch/RBP-J signaling", Developmental Biology, 311 (1): 238–50, PMID 17915208
  55. Rubenstein, John; Rakic, Pasko (2013). Cellular Migration and Formation of Neuronal Connections: Comprehensive Developmental Neuroscience. Elsevier Science and Technology. ISBN 9780123972668.
  56. Sanes, Dan H.; Reh, Thomas A.; Harris, William A. (2005). Development of the Nervous System. Elsevier Science and Technology. ISBN 9780126186215.
  57. Sofroniew, MV (November 2014). "Astrogliosis". Cold Spring Harbor Perspectives in Biology: a020420. PMID 25380660.
  58. Catherine, Haberland (2007). Clinical neuropathology: text and color atlas. New York: Demos. ISBN 9781934559529.
  59. APA dictionary of psychology 2015, ependymal cell, p. 375.
  60. "Guidance of neurons migrating to the fetal monkey neocortex". 1971. PMID 5002632.
  61. "Evolution of the neocortex: a perspective from developmental biology". 2009. PMID 19763105.
  62. "Neurons derived from radial glial cells establish radial units in neocortex". 2001. PMID 11217860.
  63. "Origin and differentiation of microglia". 2013. doi:10.3389/fncel.2013.00045.
  64. "Turnover of resident microglia in the normal adult mouse brain". 1992. PMID 1603325.
  65. "Interactions of innate and adaptive immunity in brain development and function". 2015. PMID 25110235.
  66. Pavel, Fiala; Jiří, Valenta (2013-01-01). Central Nervous System. Karolinum Press. p. 79. ISBN 9788024620671.
  67. 1 2 3 4 Polyzoidis, S.; Koletsa, T.; Panagiotidou, S.; Ashkan, K.; Theoharides, T.C. (2015). "Mast cells in meningiomas and brain inflammation". Journal of Neuroinflammation. 12 (1): 170. doi:10.1186/s12974-015-0388-3. PMC 4573939. PMID 26377554.
  68. 1 2 3 4 5 Guyton & Hall 2011, pp. 748-749.
  69. Budzyński, J; Kłopocka, M. (2014). "Brain-gut axis in the pathogenesis of Helicobacter pylori infection" (PDF). World J. Gastroenterol. 20 (18): 5212–25. doi:10.3748/wjg.v20.i18.5212. PMC 4017036. PMID 24833851.
  70. Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. (2015). "The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems" (PDF). Ann Gastroenterol. 28 (2): 203–209. PMC 4367209. PMID 25830558.
  71. Sjöstedt, E; Fagerberg, L; Hallström, BM; Häggmark, A; Mitsios, N; Nilsson, P; Pontén, F; Hökfelt, T; Uhlén, M; Mulder, J (2015). "Defining the Human Brain Proteome Using Transcriptomics and Antibody-Based Profiling with a Focus on the Cerebral Cortex". PLoS ONE. 10 (6): e0130028. doi:10.1371/journal.pone.0130028. PMC 4468152. PMID 26076492.
  72. "Fluid Physiology: 2.1 Fluid Compartments". anaesthesiamcq.com. Archived from the original on 2019-07-20. สืบค้นเมื่อ 2019-10-06.
  73. 1 2 3 4 Gray's Anatomy 2008, pp. 242-244.
  74. Purves 2012, p. 742.
  75. Gray's Anatomy 2008, p. 243.
  76. "Goodnight. Sleep Clean". The New York Times. 2014-01-11. Archived from the original on 2019-08-15. She called it the glymphatic system, a nod to its dependence on glial cells
  77. Iliff, JJ; Nedergaard, M (June 2013). "Is there a cerebral lymphatic system?". Stroke. 44 (6 Suppl 1): S93–5. doi:10.1161/STROKEAHA.112.678698. PMC 3699410. PMID 23709744.
  78. Gaillard, F. "Glymphatic pathway". radiopaedia.org. Archived from the original on 2017-10-30.
  79. 1 2 3 Bacyinski, A; Xu, M; Wang, W; Hu, J (November 2017). "The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy". Frontiers in Neuroanatomy. 11: 101. doi:10.3389/fnana.2017.00101. PMC 5681909. PMID 29163074. The paravascular pathway, also known as the “glymphatic” pathway, is a recently described system for waste clearance in the brain. According to this model, cerebrospinal fluid (CSF) enters the paravascular spaces surrounding penetrating arteries of the brain, mixes with interstitial fluid (ISF) and solutes in the parenchyma, and exits along paravascular spaces of draining veins.  ... In addition to Aβ clearance, the glymphatic system may be involved in the removal of other interstitial solutes and metabolites. By measuring the lactate concentration in the brains and cervical lymph nodes of awake and sleeping mice, Lundgaard et al. (2017) demonstrated that lactate can exit the CNS via the paravascular pathway. Their analysis took advantage of the substantiated hypothesis that glymphatic function is promoted during sleep (Xie et al., 2013; Lee et al., 2015; Liu et al., 2017).
  80. "Structural and functional features of central nervous system lymphatic vessels". 2015. PMID 26030524.
  81. "A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules". 2015. PMID 26077718.
  82. Kiernan, John A (2005). Barr's The Human Nervous System: An Anatomical Viewpoint. Lippincott Williams & Wilkins. pp. 428–230. ISBN 0-7817-5154-3.CS1 maint: Uses authors parameter (link)
  83. Dissing-Olesen, L.; Hong, S.; Stevens, B. (August 2015). "New brain lymphatic vessels drain old concepts". EBioMedicine. 2 (8): 776–7. doi:10.1016/j.ebiom.2015.08.019. PMC 4563157. PMID 26425672.
  84. 1 2 Sun, BL; Wang, LH; Yang, T; Sun, JY; Mao, LL; Yang, MF; Yuan, H; Colvin, RA; Yang, XY (April 2018). "Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases". Progress in Neurobiology. 163-164: 118–143. doi:10.1016/j.pneurobio.2017.08.007. PMID 28903061.
  85. Gray's Anatomy 2008, p. 247.
  86. Gray's Anatomy 2008, p. 251-2.
  87. 1 2 Gray's Anatomy 2008, p. 250.
  88. 1 2 Gray's Anatomy 2008, p. 248.
  89. 1 2 Gray's Anatomy 2008, p. 251.
  90. 1 2 3 Gray's Anatomy 2008, p. 254-6.
  91. 1 2 3 4 5 Elsevier's 2007, pp. 311-4.
  92. "Pericytes at the intersection between tissue regeneration and pathology". 2015. PMID 25236972.
  93. Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. (2010-11-25). "Pericytes are required for blood-brain barrier integrity during embryogenesis". Nature. 468 (7323): 562–6. Bibcode:2010Natur.468..562D. doi:10.1038/nature09513. PMC 3241506. PMID 20944625.
  94. Laterra, J.; Keep, R.; Betz, L.A.; และคณะ (1999). "Blood-cerebrospinal fluid barrier". Basic neurochemistry: molecular, cellular and medical aspects (6th ed.). Philadelphia: Lippincott-Raven.
  95. "Induction of the neural crest and the opportunities of life on the edge". 2004. doi:10.1016/j.ydbio.2004.07.033.
  96. Sadler, T. (2010). Langman's medical embryology (11th ed.). Philadelphia: Lippincott Williams & Wilkins. p. 293. ISBN 978-07817-9069-7.
  97. 1 2 Larsen 2001, p. 419.
  98. 1 2 3 Larsen 2001, pp. 85-88.
  99. Purves 2012, pp. 480-482.
  100. 1 2 3 4 Larsen 2001, pp. 445-446.
  101. "OpenStax CNX". cnx.org. Archived from the original on 2015-05-05. สืบค้นเมื่อ 2015-05-05.
  102. Larsen 2001, pp. 85-87.
  103. Purves 2012, pp. 481-484.
  104. Purves, Dale; Augustine, George J; Fitzpatrick, David; Katz, Lawrence C; LaMantia, Anthony-Samuel; McNamara, James O; Williams, S Mark, eds. (2001). "Rhombomeres". Neuroscience (2nd ed.). ISBN 978-0-87893-742-4.
  105. 1 2 Chen, X. (2012). Mechanical Self-Assembly: Science and Applications. Springer Science & Business Media. pp. 188–189. ISBN 978-1461445623.
  106. Striedter, GF; Srinivasan, S; Monuki, ES (July 2015). "Cortical folding: when, where, how, and why?". Annu. Rev. Neurosci. 38: 291–307. doi:10.1146/annurev-neuro-071714-034128. PMID 25897870.
  107. 1 2 Gautam, P; Anstey, KJ; Wen, W; Sachdev, PS; Cherbuin, N (2015). "Cortical gyrification and its relationships with cortical volume, cortical thickness, and cognitive performance in healthy mid-life adults". Behav. Brain Res. 287: 331–9. doi:10.1016/j.bbr.2015.03.018. PMID 25804360.
  108. Jordaan, HV (March 1976). "Newborn: adult brain ratios in hominid evolution". Am. J. Phys. Anthropol. 44 (2): 271–8. doi:10.1002/ajpa.1330440209. PMID 816206.
  109. Weiner, S; Monge, J; Mann, A (September 2008). "Bipedalism and parturition: an evolutionary imperative for cesarean delivery?". Clin Perinatol. 35 (3): 469–78, ix. doi:10.1016/j.clp.2008.06.003. PMID 18952015.
  110. 1 2 Ronan, L; Voets, N; Rua, C; Alexander-Bloch, A; Hough, M; Mackay, C; Crow, TJ; James, A; Giedd, JN; Fletcher, PC (August 2014). "Differential tangential expansion as a mechanism for cortical gyrification". Cerebral Cortex. 24 (8): 2219–28. doi:10.1093/cercor/bht082. PMC 4089386. PMID 23542881.
  111. Van Essen, DC (1997-01-23). "A tension-based theory of morphogenesis and compact wiring in the central nervous system". Nature. 385 (6614): 313–8. Bibcode:1997Natur.385..313E. doi:10.1038/385313a0. PMID 9002514.
  112. APA dictionary of psychology (2015), encephalization, p. 368 encephalization n. a larger than expected brain size for a species, given its body size. For example, an average person weighing 140 lb has an actual brain weight of 2.9 lb instead of the predicted 0.6 lb. This enlargement is the result of evolutionary advancement, with the brains of higher species increasing in anatomical complexity as cognitive functions were transferred from more primitive brain areas to the cerebral cortex (a process called corticalization ).
  113. Florio, M.; และคณะ (2015-03-27). "Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion". Science. 347 (6229): 1465–70. Bibcode:2015Sci...347.1465F. doi:10.1126/science.aaa1975. PMID 25721503.
  114. Guyton & Hall 2011, p. 685.
  115. 1 2 Guyton & Hall 2011, p. 687.
  116. 1 2 Guyton & Hall 2011, p. 686.
  117. Guyton & Hall 2011, pp. 698,708.
  118. Davidson's 2010, p. 1139.
  119. 1 2 Hellier, J. (2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. pp. 300–303. ISBN 978-1610693387.
  120. 1 2 Guyton & Hall 2011, p. 571-576.
  121. Guyton & Hall 2011, pp. 573-574.
  122. Guyton & Hall 2011, pp. 623-631.
  123. Guyton & Hall 2011, pp. 739-740.
  124. Pocock 2006, pp. 138-139.
  125. Squire 2013, pp. 525-526.
  126. Guyton & Hall 2011, pp. 647-648.
  127. Guyton & Hall 2011, pp. 202-203.
  128. Guyton & Hall 2011, pp. 205-208.
  129. 1 2 3 4 Guyton & Hall 2011, pp. 505-509.
  130. "Brain Basics: Understanding Sleep". National Institute of Neurological Disorders and Stroke. Archived from the original on 2017-12-22.
  131. Guyton & Hall 2011, p. 723.
  132. Davis, J.F.; Choi, D.L.; Benoit, S.C. (2011). "24. Orexigenic Hypothalamic Peptides Behavior and Feeding - 24.5 Orexin". In Preedy, V.R.; Watson, R.R.; Martin, C.R. Handbook of Behavior, Food and Nutrition. Springer. pp. 361–362. ISBN 9780387922713.
  133. Squire 2013, p. 800.
  134. Squire 2013, p. 803.
  135. Squire 2013, p. 805.
  136. Guyton & Hall 2011, p. 720-2.
  137. Poeppel, D.; Emmorey, K.; Hickok, G.; Pylkkänen, L. (2012-10-10). "Towards a new neurobiology of language". The Journal of Neuroscience. 32 (41): 14125–14131. doi:10.1523/JNEUROSCI.3244-12.2012. PMC 3495005. PMID 23055482.
  138. Hickok, G (September 2009). "The functional neuroanatomy of language". Physics of Life Reviews. 6 (3): 121–143. Bibcode:2009PhLRv...6..121H. doi:10.1016/j.plrev.2009.06.001. PMC 2747108. PMID 20161054.
  139. Fedorenko, E.; Kanwisher, N. (2009). "Neuroimaging of language: why hasn't a clearer picture emerged?" (PDF). Language and Linguistics Compass. 3 (4): 839–865. doi:10.1111/j.1749-818x.2009.00143.x. Archived (PDF) from the original on 2017-04-22.
  140. Damasio, H. (2001). "Neural basis of language disorders". In Chapey, Roberta. Language intervention strategies in aphasia and related neurogenic communication disorders (4th ed.). Lippincott Williams & Wilkins. pp. 18–36. ISBN 9780781721332. OCLC 45952164.
  141. 1 2 Berntson, G.; Cacioppo, J. (2009). Handbook of Neuroscience for the Behavioral Sciences, Volume 1. John Wiley & Sons. p. 145. ISBN 978-0470083550.
  142. Hellier, J. (2014). The Brain, the Nervous System, and Their Diseases [3 volumes]. ABC-CLIO. p. 1135. ISBN 978-1610693387.
  143. Kolb, B.; Whishaw, I.Q. (2013). Introduction to Brain and Behavior. Macmillan Higher Education. p. 296. ISBN 978-1464139604.
  144. Sherwood, L. (2012). Human Physiology: From Cells to Systems. Cengage Learning. p. 181. ISBN 978-1133708537.
  145. Kalat, J (2015). Biological Psychology. Cengage Learning. p. 425. ISBN 978-1305465299.
  146. 1 2 Cowin, S.C.; Doty, S.B. (2007). Tissue Mechanics. Springer Science & Business Media. p. 4. ISBN 978-0387499857.
  147. 1 2 Morris, C.G.; Maisto, A.A. (2011). Understanding Psychology. Prentice Hall. p. 56. ISBN 978-0205769063.
  148. 1 2 Kolb, B.; Whishaw, I.Q. (2013). Introduction to Brain and Behavior (Loose-Leaf). Macmillan Higher Education. pp. 524–549. ISBN 978-1464139604.
  149. Schacter, D.L.; Gilbert, D.T.; Wegner, D.M. (2009). Introducing Psychology. Macmillan. p. 80. ISBN 978-1429218214.
  150. Sander, David (2013). Armony, J.; Vuilleumier, Patrik, eds. The Cambridge handbook of human affective neuroscience. Cambridge: Cambridge Univ. Press. p. 16. ISBN 9780521171557.
  151. 1 2 "Prefrontal/accumbal catecholamine system processes high motivational salience". 2012. PMID 22754514. Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. ... Motivation can be conceptually described as a continuum along which stimuli can either reinforce or punish responses to other stimuli. Behaviorally, stimuli that reinforce are called rewarding and those that punish aversive (Skinner, 1953). Reward and aversion describe the impact a stimulus has on behavior, and provided of motivational properties, thus able to induce attribution of motivational salience. ... Attribution of motivational salience is related to the salience of an UCS (Dallman et al., 2003; Pecina et al., 2006). Thus, the more salient an UCS the more likely a neutral (to-be-conditioned) stimulus will be associated with it through motivational salience attribution. Prior experience is a major determinant of the motivational impact of any given stimulus (Borsook et al., 2007) and emotional arousal induced by motivational stimuli increases the attention given to stimuli influencing both the initial perceptual encoding and the consolidation process (Anderson et al., 2006; McGaugh, 2006).
  152. Lindquist, KA.; Wager, TD.; Kober, H; Bliss-Moreau, E; Barrett, LF (2012-05-23). "The brain basis of emotion: A meta-analytic review". Behavioral and Brain Sciences. 35 (3): 121–143. doi:10.1017/S0140525X11000446. PMC 4329228. PMID 22617651.
  153. Phan, KL; Wager, Tor; Taylor, SF.; Liberzon, l (2002-06-01). "Functional Neuroanatomy of Emotion: A Meta-Analysis of Emotion Activation Studies in PET and fMRI". NeuroImage. 16 (2): 331–348. doi:10.1006/nimg.2002.1087. PMID 12030820.
  154. Malenka, RC; Nestler, EJ; Hyman, SE (2009). "Preface". In Sydor, A; Brown, RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. p. xiii. ISBN 9780071481274.
  155. 1 2 3 4 Malenka, RC; Nestler, EJ; Hyman, SE; Holtzman, DM (2015). "Chapter 14: Higher Cognitive Function and Behavioral Control". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 9780071827706.
  156. 1 2 Malenka, RC; Nestler, EJ; Hyman, SE; Holtzman, DM (2015). "Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 9780071827706.
  157. 1 2 3 4 5 Diamond, A (2013). "Executive functions". Annual Review of Psychology. 64: 135–168. doi:10.1146/annurev-psych-113011-143750. PMC 4084861. PMID 23020641.
    Figure 4: Executive functions and related terms Archived 2018-05-09 at the Wayback Machine.
  158. MacLeod, Colin. "Concept of Inhibition in Cognition" (PDF). Archived from the original (PDF) on 2014-12-23. สืบค้นเมื่อ 2013-03-03.CS1 maint: Uses authors parameter (link)
  159. "Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis". 2015. PMID 25591060.
  160. "Executive functions". 2013. PMID 23020641.
  161. 1 2 3 4 Hyun, J.C.; Weyandt, L.L.; Swentosky, A. (2014). "Chapter 2: The Physiology of Executive Functioning". In Goldstein, S.; Naglieri, J. Handbook of Executive Functioning. New York: Springer. pp. 13–23. ISBN 9781461481065.
  162. 1 2 Malenka, RC; Nestler, EJ; Hyman, SE; Holtzman, DM (2015). "Chapter 14: Higher Cognitive Function and Behavioral Control". Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (3rd ed.). New York: McGraw-Hill Medical. ISBN 9780071827706. In conditions in which prepotent responses tend to dominate behavior, such as in drug addiction, where drug cues can elicit drug seeking (Chapter 16), or in attention deficit hyperactivity disorder (ADHD; described below), significant negative consequences can result. ... ADHD can be conceptualized as a disorder of executive function; specifically, ADHD is characterized by reduced ability to exert and maintain cognitive control of behavior. Compared with healthy individuals, those with ADHD have diminished ability to suppress inappropriate prepotent responses to stimuli (impaired response inhibition) and diminished ability to inhibit responses to irrelevant stimuli (impaired interference suppression). ... Functional neuroimaging in humans demonstrates activation of the prefrontal cortex and caudate nucleus (part of the dorsal striatum) in tasks that demand inhibitory control of behavior. ... Early results with structural MRI show a thinner cerebral cortex, across much of the cerebrum, in ADHD subjects compared with age-matched controls, including areas of [the] prefrontal cortex involved in working memory and attention.
  163. Pocock 2006, p. 68.
  164. Clark, B.D.; Goldberg, E.M.; Rudy, B. (December 2009). "Electrogenic tuning of the axon initial segment". The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry. 15 (6): 651–68. doi:10.1177/1073858409341973. PMC 2951114. PMID 20007821.
  165. Pocock 2006, pp. 70-74.
  166. 1 2 "NIMH » Brain Basics". www.nimh.nih.gov. Archived from the original on 2017-03-26. สืบค้นเมื่อ 2017-03-26.
  167. Purves, Dale (2011). Neuroscience (5. ed.). Sunderland, Mass.: Sinauer. p. 139. ISBN 978-0-87893-695-3.
  168. Swaminathan, N (2008-04-29). "Why Does the Brain Need So Much Power?". Scientific American. Scientific American, a Division of Nature America, Inc. Archived from the original on 2014-01-27. สืบค้นเมื่อ 2010-11-19.
  169. 1 2 Wasserman, DH (January 2009). "Four grams of glucose". American Journal of Physiology. Endocrinology and Metabolism. 296 (1): E11–21. doi:10.1152/ajpendo.90563.2008. PMC 2636990. PMID 18840763. Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated. ... The brain consumes ∼60% of the blood glucose used in the sedentary, fasted person. ... The amount of glucose in the blood is preserved at the expense of glycogen reservoirs (Fig. 2). In postabsorptive humans, there are ∼100 g of glycogen in the liver and ∼400 g of glycogen in muscle. Carbohydrate oxidation by the working muscle can go up by ∼10-fold with exercise, and yet after 1 h, blood glucose is maintained at ∼4 g. ... It is now well established that both insulin and exercise cause translocation of GLUT4 to the plasma membrane. Except for the fundamental process of GLUT4 translocation, [muscle glucose uptake (MGU)] is controlled differently with exercise and insulin. Contraction-stimulated intracellular signaling (52, 80) and MGU (34, 75, 77, 88, 91, 98) are insulin independent. Moreover, the fate of glucose extracted from the blood is different in response to exercise and insulin (91, 105). For these reasons, barriers to glucose flux from blood to muscle must be defined independently for these two controllers of MGU.
  170. Quistorff, B; Secher, N; Van Lieshout, J (2008-07-24). "Lactate fuels the human brain during exercise". The FASEB Journal. 22 (10): 3443–3449. doi:10.1096/fj.08-106104. PMID 18653766.
  171. Obel, L.F.; Müller, M.S.; Walls, A.B.; Sickmann, H.M.; Bak, L.K.; Waagepetersen, H.S.; Schousboe, A. (2012). "Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level". Frontiers in Neuroenergetics. 4: 3. doi:10.3389/fnene.2012.00003. PMC 3291878. PMID 22403540.
  172. Marin-Valencia, I.; และคณะ (February 2013). "Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain". Journal of Cerebral Blood Flow and Metabolism. 33 (2): 175–82. doi:10.1038/jcbfm.2012.151. PMC 3564188. PMID 23072752.
  173. Tsuji, A. (2005). "Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems". NeuroRx. 2 (1): 54–62. doi:10.1602/neurorx.2.1.54. PMC 539320. PMID 15717057. Uptake of valproic acid was reduced in the presence of medium-chain fatty acids such as hexanoate, octanoate, and decanoate, but not propionate or butyrate, indicating that valproic acid is taken up into the brain via a transport system for medium-chain fatty acids, not short-chain fatty acids. ... Based on these reports, valproic acid is thought to be transported bidirectionally between blood and brain across the BBB via two distinct mechanisms, monocarboxylic acid-sensitive and medium-chain fatty acid-sensitive transporters, for efflux and uptake, respectively.
  174. Vijay, N.; Morris, M.E. (2014). "Role of monocarboxylate transporters in drug delivery to the brain". Curr. Pharm. Des. 20 (10): 1487–98. doi:10.2174/13816128113199990462. PMC 4084603. PMID 23789956. Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate. ... MCT1 and MCT4 have also been associated with the transport of short chain fatty acids such as acetate and formate which are then metabolized in the astrocytes [78].
  175. Clark, D.D.; Sokoloff, L. (1999). Siegel, G.J.; Agranoff, B.W.; Albers, R.W.; Fisher, S.K.; Uhler, M.D., eds. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Philadelphia: Lippincott. pp. 637–670. ISBN 978-0-397-51820-3.
  176. Mrsulja, B.B. (2012). Pathophysiology of Cerebral Energy Metabolism. Springer Science & Business Media. pp. 2–3. ISBN 978-1468433487.
  177. Raichle, M.; Gusnard, DA (2002). "Appraising the brain's energy budget". Proc. Natl. Acad. Sci. U.S.A. 99 (16): 10237–10239. Bibcode:2002PNAS...9910237R. doi:10.1073/pnas.172399499. PMC 124895. PMID 12149485.
  178. Gianaros, Peter J.; Gray, Marcus A.; Onyewuenyi, Ikechukwu; Critchley, Hugo D. (2010). "Chapter 50. Neuroimaging methods in behavioral medicine". In Steptoe, A. Handbook of Behavioral Medicine: Methods and Applications. Springer Science & Business Media. p. 770. doi:10.1007/978-0-387-09488-5_50. ISBN 978-0387094885.
  179. "Brain may flush out toxins during sleep". National Institutes of Health. Archived from the original on 2013-10-20. สืบค้นเมื่อ 2013-10-25.
  180. Xie, L; Kang, H; Xu, Q; Chen, MJ; Liao, Y; Thiyagarajan, M; O'Donnell, J; Christensen, DJ; Nicholson, C; Iliff, JJ; Takano, T; Deane, R; Nedergaard, M (October 2013). "Sleep drives metabolite clearance from the adult brain". Science. 342 (6156): 373–377. Bibcode:2013Sci...342..373X. doi:10.1126/science.1241224. PMC 3880190. PMID 24136970. Thus, the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.
  181. Tononi, Guilio; Cirelli, Chiara (August 2013). "Perchance to Prune" (PDF). Scientific American. 309 (2): 34–39. Bibcode:2013SciAm.309b..34T. doi:10.1038/scientificamerican0813-34. PMID 23923204.
  182. 1 2 Van Essen, D.C.; และคณะ (October 2012). "The Human Connectome Project: A data acquisition perspective". NeuroImage. 62 (4): 2222–2231. doi:10.1016/j.neuroimage.2012.02.018. PMC 3606888. PMID 22366334.
  183. Jones, E.G.; Mendell, L.M. (1999-04-30). "Assessing the Decade of the Brain". Science. 284 (5415): 739. Bibcode:1999Sci...284..739J. doi:10.1126/science.284.5415.739. PMID 10336393.
  184. "A $4.5 Billion Price Tag for the BRAIN Initiative?". Science | AAAS. 2014-06-05. Archived from the original on 2017-06-18.
  185. Towle, V.L.; และคณะ (January 1993). "The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy". Electroencephalography and Clinical Neurophysiology. 86 (1): 1–6. doi:10.1016/0013-4694(93)90061-y. PMID 7678386.
  186. Purves 2012, pp. 632-633.
  187. Silverstein, J. (2012). "Mapping the Motor and Sensory Cortices: A Historical Look and a Current Case Study in Sensorimotor Localization and Direct Cortical Motor Stimulation". The Neurodiagnostic Journal. 52 (1): 54–68. PMID 22558647. Archived from the original on 2012-11-17.
  188. Boraud, T.; Bezard, E.; และคณะ (2002). "From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control". Progress in Neurobiology. 66 (4): 265–283. doi:10.1016/s0301-0082(01)00033-8.
  189. 1 2 "Cerebral organoids model human brain development and microcephaly". 2013. doi:10.1038/nature12517.
  190. "Growing model brains: An embryonic idea". The Economist. 2013-08-31. สืบค้นเมื่อ 2013-09-07.
  191. Lancaster, MA; Renner, M; Martin, CA; Wenzel, D; Bicknell, LS; Hurles, ME; Homfray, T; Penninger, JM; Jackson, AP; Knoblich, JA (2013-09-19). "Cerebral organoids model human brain development and microcephaly". Nature. 501 (7467): 373–9. Bibcode:2013Natur.501..373L. doi:10.1038/nature12517. PMC 3817409. PMID 23995685.
  192. Lee, CT; Bendriem, RM; Wu, WW; Shen, RF (2017-08-20). "3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders". Journal of Biomedical Science. 24 (1): 59. doi:10.1186/s12929-017-0362-8. PMC 5563385. PMID 28822354.
  193. "Magnetic Resonance, a critical peer-reviewed introduction; functional MRI". European Magnetic Resonance Forum. Archived from the original on 2017-06-02. สืบค้นเมื่อ 2017-06-30.
  194. Buxton, R.; Uludag, K.; Liu, T. (2004). "Modeling the haemodynamic response to brain activation". NeuroImage. 23: S220–S233. CiteSeerX 10.1.1.329.29. doi:10.1016/j.neuroimage.2004.07.013. PMID 15501093.
  195. Biswal, B.B. (2012-08-15). "Resting state fMRI: a personal history". NeuroImage. 62 (2): 938–44. doi:10.1016/j.neuroimage.2012.01.090. PMID 22326802.
  196. APA dictionary of psychology (2015), Default-mode network, p. 289 default-mode network (DMN) a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. It comprises the medial prefrontal cortex , posterior cin gulate cortex , angular gyrus , precuneus , and middle frontal gyrus , among other regions. The DMN activates when individuals are engaged in internally focused tasks (i.e., those of a self-referential introspective nature), including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others (see social perception ). However, the network also maintains high levels of metabolic activity at rest, in the absence of any task demands. Some researchers thus have suggested that ongoing unconstrained self-reflective thought might be the natural (default) state of the mind when individuals are not otherwise engaged.
  197. Sweet, Lawrence H (2011). Kreutzer, Jeffrey S; DeLuca, John; Caplan, Bruce, eds. Default Mode Network. Encyclopedia of Clinical Neuropsychology. Springer. pp. 785–786. doi:10.1007/978-0-387-79948-3. ISBN 978-0-387-79947-6. The default network is a system of brain regions that is active when there are no external cognitive demands. The greatest brain activity is observed in this system during unstructured rest, and the least activity is observed during tasks that require concerted external focus. The existence and core location of the default network are widely accepted; however, its function and subsystems remain under investigation. The default network is distributed bilaterally and is comprised of at least two core midline regions, the posterior cingulate cortex and medial frontal gyrus, plus the inferior parietal lobule and areas in the medial and lateral temporal lobe.CS1 maint: Uses editors parameter (link)
  198. Purves 2012, p. 20.
  199. Kane, R.L.; Parsons, T.D. (2017). The Role of Technology in Clinical Neuropsychology. Oxford University Press. p. 399. ISBN 978-0190234737. Irimia, Chambers, Torgerson, and Van Horn (2012) provide a first-step graphic on how best to display connectivity findings, as is presented in Figure 13.15. This is referred to as a connectogram.
  200. Andrews, D.G. (2001). Neuropsychology. Psychology Press. ISBN 978-1-84169-103-9.
  201. Lepage, M. (2010). "Research at the Brain Imaging Centre". Douglas Mental Health University Institute. Archived from the original on 2012-03-05.
  202. 1 2 Steward, C.A.; และคณะ (2017). "Genome annotation for clinical genomic diagnostics: strengths and weaknesses". Genome Med. 9 (1): 49. doi:10.1186/s13073-017-0441-1. PMC 5448149. PMID 28558813.
  203. Harrow, J.; และคณะ (September 2012). "GENCODE: the reference human genome annotation for The ENCODE Project". Genome Res. 22 (9): 1760–74. doi:10.1101/gr.135350.111. PMC 3431492. PMID 22955987.
  204. Gibson, G; Muse, SV. A primer of genome science (3rd ed.). Sunderland, MA: Sinauer Associates.
  205. "The human proteome in brain - The Human Protein Atlas". www.proteinatlas.org. Archived from the original on 2017-09-29. สืบค้นเมื่อ 2017-09-29.
  206. Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.; Lindskog, Cecilia; Oksvold, Per; Mardinoglu, Adil; Sivertsson, Åsa; Kampf, Caroline; Sjöstedt, Evelina (2015-01-23). (a8897593-caa2-4e5f-92bb-672799a5e682).html "Tissue-based map of the human proteome" Check |url= value (help). Science (in อังกฤษ). 347 (6220): 1260419. doi:10.1126/science.1260419. ISSN 0036-8075. PMID 25613900.
  207. Warden, A (2017). "Gene expression profiling in the human alcoholic brain". Neuropharmacology. 122: 161–174. doi:10.1016/j.neuropharm.2017.02.017. PMC 5479716. PMID 28254370.
  208. Farris, S.P.; และคณะ (2015). "Applying the new genomics to alcohol dependence". Alcohol. 49 (8): 825–36. doi:10.1016/j.alcohol.2015.03.001. PMC 4586299. PMID 25896098.
  209. Rozycka, A; Liguz-Lecznar, M (August 2017). "The space where aging acts: focus on the GABAergic synapse". Aging Cell. 16 (4): 634–643. doi:10.1111/acel.12605. PMC 5506442. PMID 28497576.
  210. Flores, CE; Méndez, P (2014). "Shaping inhibition: activity dependent structural plasticity of GABAergic synapses". Frontiers in Cellular Neuroscience. 8: 327. doi:10.3389/fncel.2014.00327. PMC 4209871. PMID 25386117.
  211. Iwata, A; Stys, PK; Wolf, JA; Chen, XH; Taylor, AG; Meaney, DF; Smith, DH (2004). "Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors". The Journal of Neuroscience. 24 (19): 4605–4613.CS1 maint: Uses authors parameter (link)
  212. 1 2 Wasserman, J; Koenigsberg, RA (2007). "Diffuse axonal injury". Emedicine.com. Archived from the original on 2018-08-04. สืบค้นเมื่อ 2008-01-26.CS1 maint: Uses authors parameter (link)
  213. Vinas, FC; Pilitsis, J (2006). "Penetrating head trauma". Emedicine.com. Archived from the original on 2019-08-12. สืบค้นเมื่อ 2008-01-14.CS1 maint: Uses authors parameter (link)
  214. "Brain Injury, Traumatic". Medcyclopaedia. GE. Archived from the original on 2011-05-26.
  215. Dawodu, S.T. (2017-03-09). "Traumatic Brain Injury (TBI) - Definition and Pathophysiology: Overview, Epidemiology, Primary Injury". Medscape. Archived from the original on 2017-04-09.
  216. Davidson's 2010, p. 1196-7.
  217. 1 2 Davidson's 2010, p. 1205-15.
  218. Wadsworth, JD และคณะ (March 2008). "Kuru prions and sporadic Creutzfeldt-Jakob disease prions have equivalent transmission properties in transgenic and wild-type mice". Proc. Natl. Acad. Sci. USA. 105 (10): 3885–90. doi:10.1073/pnas.0800190105. PMC 2268835. PMID 18316717.CS1 maint: Uses authors parameter (link) CS1 maint: Explicit use of et al. (link) Full ArticlePDF
  219. 1 2 3 4 5 Davidson's 2010, p. 1216-7.
  220. Volkow, N.D.; Koob, G.F.; McLellan, A.T. (January 2016). "Neurobiologic advances from the brain disease model of addiction". The New England Journal of Medicine. 374 (4): 363–371. doi:10.1056/NEJMra1511480. PMC 6135257. PMID 26816013.
  221. Simpson, J.M.; Moriarty, G.L. (2013). Multimodal Treatment of Acute Psychiatric Illness: A Guide for Hospital Diversion. Columbia University Press. pp. 22–24. ISBN 978-0231536097.
  222. 1 2 3 4 Davidson's 2010, p. 1172-9.
  223. "Status Epilepticus". Epilepsy Foundation (in อังกฤษ).
  224. Moore, S.P. (2005). The Definitive Neurological Surgery Board Review. Lippincott Williams & Wilkins. p. 112. ISBN 978-1405104593.
  225. 1 2 Pennington, B.F. (2008). Diagnosing Learning Disorders, Second Edition: A Neuropsychological Framework. Guilford Press. pp. 3–10. ISBN 978-1606237861.
  226. Govaert, P.; de Vries, L.S. (2010). An Atlas of Neonatal Brain Sonography: (CDM 182-183). John Wiley & Sons. pp. 89–92. ISBN 978-1898683568.
  227. 1 2 Perese, E.F. (2012). Psychiatric Advanced Practice Nursing: A Biopsychsocial Foundation for Practice. F.A. Davis. pp. 82–88. ISBN 978-0803629998.
  228. Kearney, C.; Trull, T.J. (2016). Abnormal Psychology and Life: A Dimensional Approach. Cengage Learning. p. 395. ISBN 978-1337098106.
  229. Stevenson, D.K.; Sunshine, P.; Benitz, W.E. (2003). Fetal and Neonatal Brain Injury: Mechanisms, Management and the Risks of Practice. Cambridge University Press. p. 191. ISBN 978-0521806916.
  230. Dewhurst, John (2012). Dewhurst's Textbook of Obstetrics and Gynaecology. John Wiley & Sons. p. 43. ISBN 978-0470654576.
  231. Harbison, J.; Massey, A.; Barnett, L.; Hodge, D.; Ford, G.A. (June 1999). "Rapid ambulance protocol for acute stroke". Lancet. 353 (9168): 1935. doi:10.1016/S0140-6736(99)00966-6. PMID 10371574.
  232. Davidson's 2010, p. 1183.
  233. 1 2 Davidson's 2010, p. 1180-1.
  234. 1 2 3 4 5 6 7 Davidson's 2010, p. 1183-1185.
  235. Davidson's 2010, p. 1181.
  236. 1 2 Davidson's 2010, p. 1185-1189.
  237. Goyal, M.; และคณะ (April 2016). "Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials". The Lancet. 387 (10029): 1723–1731. doi:10.1016/S0140-6736(16)00163-X. PMID 26898852.
  238. Saver, J. L. (2005-12-08). "Time is brain—quantified". Stroke. 37 (1): 263–266. doi:10.1161/01.STR.0000196957.55928.ab. PMID 16339467.
  239. Winstein, C.J.; และคณะ (June 2016). "Guidelines for adult stroke rehabilitation and recovery". Stroke. 47 (6): e98–e169. doi:10.1161/STR.0000000000000098. PMID 27145936.
  240. Kuźma, Elżbieta; Lourida, Ilianna; Moore, Sarah F.; Levine, Deborah A.; Ukoumunne, Obioha C.; Llewellyn, David J. (November 2018). "Stroke and dementia risk: A systematic review and meta-analysis". Alzheimer's & Dementia. 14 (11): 1416–1426. doi:10.1016/j.jalz.2018.06.3061. ISSN 1552-5260. PMC 6231970. PMID 30177276.
  241. 1 2 3 4 Goila, AK; Pawar, M (2009). "The diagnosis of brain death". Indian Journal of Critical Care Medicine. 13 (1): 7–11. doi:10.4103/0972-5229.53108. PMC 2772257. PMID 19881172.
  242. 1 2 3 Wijdicks, EFM (2002-01-08). "Brain death worldwide: accepted fact but no global consensus in diagnostic criteria". Neurology. 58 (1): 20–25. doi:10.1212/wnl.58.1.20. PMID 11781400.
  243. Dhanwate, AD (September 2014). "Brainstem death: A comprehensive review in Indian perspective". Indian Journal of Critical Care Medicine. 18 (9): 596–605. doi:10.4103/0972-5229.140151. PMC 4166875. PMID 25249744.
  244. 1 2 3 4 Davidson's 2010, p. 1158.
  245. Davidson's 2010, p. 200.
  246. Urden, L.D.; Stacy, K.M.; Lough, M.E. (2013). Priorities in Critical Care Nursing - E-Book. Elsevier Health Sciences. pp. 112–113. ISBN 978-0323294140.
  247. Domínguez, J.F.; Lewis, E.D.; Turner, R.; Egan, G.F. (2009). Chiao, J.Y., ed. The Brain in Culture and Culture in the Brain: A Review of Core Issues in Neuroanthropology. Progress in Brain Research. Special issue: Cultural Neuroscience: Cultural Influences on Brain Function. 178. pp. 43–6. doi:10.1016/S0079-6123(09)17804-4. ISBN 9780444533616. PMID 19874961.
  248. "Cultural Environment Influences Brain Function | Psych Central News". Psych Central News. 2010-08-04. Archived from the original on 2017-01-17.
  249. 1 2 Macmillan, Malcolm B. (2000). An Odd Kind of Fame: Stories of Phineas Gage. MIT Press. ISBN 978-0-262-13363-0.
  250. Rescher, N. (1992). G. W. Leibniz's Monadology. Psychology Press. p. 83. ISBN 978-0-415-07284-7.
  251. Hart, WD (1996). Guttenplan, S, ed. A Companion to the Philosophy of Mind. Blackwell. pp. 265–267.
  252. Churchland, P.S. (1989). "Ch. 8". Neurophilosophy. MIT Press. ISBN 978-0-262-53085-9.
  253. Selimbeyoglu, Aslihan; Parvizi, J (2010). "Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature". Frontiers in Human Neuroscience. 4: 46. doi:10.3389/fnhum.2010.00046. PMC 2889679. PMID 20577584.
  254. Schwartz, J.H. (2000). "Appendix D: Consciousness and the Neurobiology of the Twenty-First Century". In Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science (4th ed.).CS1 maint: Uses authors parameter (link) CS1 maint: Uses editors parameter (link)
  255. Lilienfeld, S.O.; Lynn, S.J.; Ruscio, J.; Beyerstein, B.L. (2011). 50 Great Myths of Popular Psychology: Shattering Widespread Misconceptions about Human Behavior. John Wiley & Sons. p. 89. ISBN 9781444360745.
  256. McDaniel, M. (2005). "Big-brained people are smarter" (PDF). Intelligence. 33 (4): 337–346. doi:10.1016/j.intell.2004.11.005. Archived (PDF) from the original on 2014-09-06.
  257. Luders, E.; และคณะ (September 2008). "Mapping the relationship between cortical convolution and intelligence: effects of gender". Cerebral Cortex. 18 (9): 2019–26. doi:10.1093/cercor/bhm227. PMC 2517107. PMID 18089578.
  258. Hoppe, C; Stojanovic, J (2008). "High-Aptitude Minds". Scientific American Mind. 19 (4): 60–67. doi:10.1038/scientificamericanmind0808-60.
  259. "Tupaia belangeri". The Genome Institute, Washington University. Archived from the original on 2010-06-01. สืบค้นเมื่อ 2016-01-22.
  260. Jarrett, C. (2014-11-17). Great Myths of the Brain. John Wiley & Sons. ISBN 9781118312711.
  261. Phillips, Helen (2002-07-11). "Video game "brain damage" claim criticised". New Scientist. Archived from the original on 2009-01-11. สืบค้นเมื่อ 2008-02-06.
  262. Popova, Maria (2011-08-18). "'Brain Culture': How Neuroscience Became a Pop Culture Fixation". The Atlantic. Archived from the original on 2017-07-28.
  263. Thornton, Davi Johnson (2011). Brain Culture. Neuroscience and Popular Media. Rutgers University Press. ISBN 978-0813550138.
  264. Clynes, Manfred E; Kline, Nathan S (September 1960). "Cyborgs and Space" (PDF). Astronautics. Archived from the original (PDF) on 2011-10-06.CS1 maint: Uses authors parameter (link)
  265. Bergfelder, Tim (2005). International Adventures: German Popular Cinema and European Co-productions in the 1960s. Berghahn Books. p. 129. ISBN 978-1-57181-538-5.
  266. "พระไตรปิฎก ฉบับมหามกุฏฯ (ภาษาไทย) เล่มที่ ๗ วินัยปิฎก มหาวรรค ภาคที่ ๒", E-Tipitaka 3.0.7, เรื่องเศรษฐีชาวพระนครราชคฤห์, pp. 249-253, 2018
  267. Kandel, ER; Schwartz, JH; Jessell, TM (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.CS1 maint: Uses authors parameter (link)
  268. 1 2 3 4 Gross, Charles G. (1987). Adelman, George, ed. Encyclopedia of neuroscience (PDF) (2. ed.). Boston: Birkhäeuser. pp. 843–847. ISBN 978-0817633356. Archived (PDF) from the original on 2013-05-05.
  269. 1 2 Bear, MF; Connors, BW; Paradiso, MA (2001). Neuroscience: Exploring the Brain. Baltimore: Lippincott. ISBN 978-0-7817-3944-3.CS1 maint: Uses authors parameter (link)
  270. von Staden, p.157
  271. Swanson, Larry W. (2014-08-12). Neuroanatomical Terminology: A Lexicon of Classical Origins and Historical Foundations. Oxford University Press. ISBN 9780195340624.
  272. 1 2 Lokhorst, Gert-Jan (2016-01-01). "Descartes and the Pineal Gland". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. สืบค้นเมื่อ 2017-03-11.
  273. 1 2 3 4 5 Gross, Charles G. (1999). Brain, vision, memory : tales in the history of neuroscience (1st MIT Press pbk. ed.). Cambridge, Mass.: MIT. pp. 37–51. ISBN 978-0262571357.
  274. Marshall, Louise H.; Magoun, Horace W. (2013-03-09). Discoveries in the Human Brain: Neuroscience Prehistory, Brain Structure, and Function. Springer Science & Business Media. p. 44. ISBN 978-1-475-74997-7.
  275. Holtz, Anders; Levi, Richard (2010-07-20). Spinal Cord Injury. Oxford University Press. ISBN 9780199706815.
  276. Tessman, Patrick A.; Suarez, Jose I. (2002). "Influence of early printmaking on the development of neuroanatomy and neurology". Archives of Neurology. 59 (12): 1964–1969. doi:10.1001/archneur.59.12.1964. PMID 12470188.
  277. O'Connor, James (2003). "Thomas Willis and the background to Cerebri Anatome". Journal of the Royal Society of Medicine. 96 (3): 139–143. doi:10.1258/jrsm.96.3.139. PMC 539424. PMID 12612118.
  278. EMERY, ALAN (October 2000). "A Short History of Neurology: The British Contribution 1660-1910. Edited by F. CLIFFORD ROSE. (Pp. 282; illustrated; £25 Paperback; ISBN 07506 4165 7.) Oxford: Butterworth-Heinemann". Journal of Anatomy. 197 (3): 513–518. doi:10.1046/j.1469-7580.2000.197305131.x. PMC 1468164.
  279. Pearce, J.M.S. (2009-03-17). "Marie-Jean-Pierre Flourens (1794-1867) and Cortical Localization". European Neurology. 61 (5): 311–314. doi:10.1159/000206858. PMID 19295220.
  280. Sabbatini, Renato M.E. "Sabbatini, R.M.E.: The Discovery of Bioelectricity. Nerve Conduction". www.cerebromente.org.br. Archived from the original on 2017-06-26. สืบค้นเมื่อ 2017-06-10.
  281. Karbowski, Kazimierz (2008-02-14). "Sixty Years of Clinical Electroencephalography". European Neurology. 30 (3): 170–175. doi:10.1159/000117338. PMID 2192889.
  282. 1 2 3 De Carlos, Juan A.; Borrell, José (August 2007). "A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience". Brain Research Reviews. 55 (1): 8–16. doi:10.1016/j.brainresrev.2007.03.010. hdl:10261/62299. PMID 17490748.
  283. Burke, R.E. (April 2007). "Sir Charles Sherrington's The integrative action of the nervous system: a centenary appreciation". Brain. 130 (Pt 4): 887–894. doi:10.1093/brain/awm022. PMID 17438014. Archived from the original on 2015-05-27.
  284. Squire, Larry R., ed. (1996). The history of neuroscience in autobiography. Washington DC: Society for Neuroscience. pp. 475–97. ISBN 978-0126603057.
  285. Cowan, W.M.; Harter, D.H.; Kandel, E.R. (2000). "The emergence of modern neuroscience: Some implications for neurology and psychiatry". Annual Review of Neuroscience. 23: 345–346. doi:10.1146/annurev.neuro.23.1.343. PMID 10845068.
  286. Brady, Joseph V.; Nauta, Walle J. H. (2013-10-22). Principles, Practices, and Positions in Neuropsychiatric Research: Proceedings of a Conference Held in June 1970 at the Walter Reed Army Institute of Research, Washington, D.C., in Tribute to Dr. David Mckenzie Rioch upon His Retirement as Director of the Neuropsychiatry Division of That Institute. Elsevier. p. vii. ISBN 9781483154534.
  287. Adelman, George (2010-01-15). "The Neurosciences Research Program at MIT and the Beginning of the Modern Field of Neuroscience". Journal of the History of the Neurosciences. 19 (1): 15–23. doi:10.1080/09647040902720651. PMID 20391098.
  288. 1 2 Principles of Neural Science, 4th ed. Eric R. Kandel, James H. Schwartz, Thomas M. Jessel, eds. McGraw-Hill:New York, NY. 2000.
  289. Papez, J.W. (February 1995). "A proposed mechanism of emotion. 1937". The Journal of Neuropsychiatry and Clinical Neurosciences. 7 (1): 103–12. doi:10.1176/jnp.7.1.103. PMID 7711480.
  290. Papez, J. W. (1995-02-01). "A proposed mechanism of emotion. 1937 [classical article]". The Journal of Neuropsychiatry and Clinical Neurosciences. 7 (1): 103–112. doi:10.1176/jnp.7.1.103. PMID 7711480.
  291. Lambert, Kelly G. (August 2003). "The life and career of Paul MacLean". Physiology & Behavior. 79 (3): 343–349. doi:10.1016/S0031-9384(03)00147-1. PMID 12954429.
  292. Chatterjee, Anjan; Coslett, H. Branch (December 2013). The Roots of Cognitive Neuroscience: Behavioral Neurology and Neuropsychology. OUP USA. pp. 337–8. ISBN 9780195395549.
  293. Bliss, Michael (2005-10-01). Harvey Cushing : A Life in Surgery: A Life in Surgery. USA: Oxford University Press. pp. ix–x. ISBN 9780195346954.
  294. Kretzer, RM; Coon, AL; Tamargo, RJ (June 2010). "Walter E. Dandy's contributions to vascular neurosurgery". Journal of Neurosurgery. 112 (6): 1182–91. doi:10.3171/2009.7.JNS09737. PMID 20515365.
  295. Glees, Paul (2005). The Human Brain. Cambridge University Press. p. 1. ISBN 9780521017817.
  296. Simpkins, C. Alexander; Simpkins, Annellen M. (2012). Neuroscience for Clinicians: Evidence, Models, and Practice. Springer Science & Business Media. p. 143. ISBN 978-1461448426.
  297. Bornstein, Marc H.; Lamb, Michael E. (2015). Developmental Science: An Advanced Textbook. Psychology Press. p. 220. ISBN 978-1136282201.
  298. 1 2 Bernstein, Douglas (2010). Essentials of Psychology. Cengage Learning. p. 64. ISBN 978-0495906933.
  299. Hofman, Michel A. (2014-03-27). "Evolution of the human brain: when bigger is better". Frontiers in Neuroanatomy. 8: 15. doi:10.3389/fnana.2014.00015. PMC 3973910. PMID 24723857.
  300. Gray, Peter (2002). Psychology (4th ed.). Worth Publishers. ISBN 978-0716751625. OCLC 46640860.
  301. Lu, Zhong-Lin; Dosher, Barbara (2013). Visual Psychophysics: From Laboratory to Theory. MIT Press. p. 3. ISBN 978-0262019453.
  302. Sharwood Smith, Mike (2017). Introducing Language and Cognition. Cambridge University Press. p. 206. ISBN 978-1107152892.
  303. Kolb, Bryan; Whishaw, Ian Q. (2013). Introduction to Brain and Behavior. Macmillan Higher Education. p. 21. ISBN 978-1464139604.
  304. Nieuwenhuys, Rudolf; ten Donkelaar, Hans J.; Nicholson, Charles (2014). The Central Nervous System of Vertebrates. Springer. p. 2127. ISBN 978-3642182624.
  305. Lerner, Lee; Lerner, Brenda Wilmoth (2004). The Gale Encyclopedia of Science: Pheasants-Star. Gale. p. 3759. ISBN 978-0787675592. As human's position changed and the manner in which the skull balanced on the spinal column pivoted, the brain expanded, altering the shape of the cranium.
  306. Begun, David R. (2012). A Companion to Paleoanthropology. John Wiley & Sons. p. 388. ISBN 9781118332375.
  307. Jones, R. (2012). "Neurogenetics: What makes a human brain?". Nature Reviews Neuroscience. 13 (10): 655. doi:10.1038/nrn3355. PMID 22992645.
  308. "The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis". 2012. PMID 22116731.

อ้างอิงอื่น ๆ

  • Colledge, Nicki R.; Walker, Brian R.; Ralston, Stuart H.; Ralston, eds. (2010). Davidson's Principles and Practice of Medicine (21st ed.). Edinburgh: Churchill Livingstone/Elsevier. ISBN 978-0-7020-3085-7.
  • Hall, John (2011). Guyton and Hall Textbook of Medical Physiology (12th ed.). Philadelphia, PA: Saunders/Elsevier. ISBN 978-1-4160-4574-8.
  • Larsen, William J. (2001). Human Embryology (3rd ed.). Philadelphia, PA: Churchill Livingstone. ISBN 978-0-443-06583-5.
  • Bogart, Bruce Ian; Ort, Victoria (2007). Elsevier's Integrated Anatomy and Embryology. Philadelphia, PA: Elsevier Saunders. ISBN 978-1-4160-3165-9.
  • Pocock, G.; Richards, C. (2006). Human Physiology: The Basis of Medicine (3rd ed.). Oxford: Oxford University Press. ISBN 978-0-19-856878-0.
  • Purves, Dale (2012). Neuroscience (5th ed.). Sunderland, MA: Sinauer associates. ISBN 978-0-87893-695-3.
  • Squire, Larry (2013). Fundamental Neuroscience. Waltham, MA: Elsevier. ISBN 978-0-12-385-870-2.
  • Standring, Susan, ed. (2008). Gray's Anatomy: The Anatomical Basis of Clinical Practice (40th ed.). London: Churchill Livingstone. ISBN 978-0-8089-2371-8.
  • VandenBos, Gary R, ed. (2015). APA dictionary of psychology (2nd ed.). Washington, DC: American Psychological Association. doi:10.1037/14646-000. ISBN 978-1-4338-1944-5.

แหล่งที่มา

WikiPedia: สมองมนุษย์ http://www.cerebromente.org.br/n06/historia/bioele... http://www.douglas.qc.ca/page/imagerie-cerebrale?l... http://www.unifr.ch/ifaa/Public/EntryPage/TA98%20T... http://www.anaesthesiamcq.com/FluidBook/fl2_1.php http://etymonline.com/index.php?allowed_in_frame=0... http://www.medcyclopaedia.com/library/topics/volum... http://emedicine.medscape.com/article/326510-overv... http://www.readperiodicals.com/201203/2662763741.h... http://dictionary.reference.com/browse/cerebrum http://www.scientificamerican.com/article/why-does...