การตอบสนองทั้งระบบต่อตัวกระตุ้น ของ ตัวกระตุ้น

การตอบสนองของระบบประสาท

แม้ว่าตัวรับความรู้สึกและตัวกระตุ้นจะมีหลายแบบ แต่ตัวกระตุ้นภายนอกโดยมากก่อให้เกิดศักย์ตัวรับความรู้สึกที่มีอยู่เฉพาะที่ในเซลล์ประสาทที่อยู่ในอวัยวะรับความรู้สึกหรือเยื่อรับความรู้สึก[15] ในระบบประสาท ทั้งตัวกระตุ้นภายนอกและทั้งตัวกระตุ้นภายใน ก่อให้เกิดการตอบสนอง 2 ประเภทอย่างใดอย่างหนึ่ง คือ การตอบสนองแบบกระตุ้น (excitatory response) ซึ่งโดยปกติอยู่ในรูปแบบของศักยะงาน และการตอบสนองแบบยับยั้ง (inhibitory response)[34]

การตอบสนองแบบกระตุ้น

เมื่อเซลล์ประสาทที่รับสัญญาณรับการกระตุ้นด้วยพลังกระตุ้น (excitatory impulse) สารสื่อประสาทจากเซลล์ที่ส่งสัญญาณจะเข้าไปยึดเดนไดรต์ของเซลล์ และทำให้สภาวะให้ซึมผ่านได้ของเซลล์เพิ่มมากขึ้นต่อไอออนเฉพาะอย่างอย่างใดอย่างหนึ่ง ประเภทของสารสื่อประสาทเป็นตัวกำหนดประเภทของไอออนที่เซลล์อนุญาตให้ซึมผ่านได้ ในกรณีของศักย์หลังไซแนปส์แบบกระตุ้น (excitatory postsynaptic potential) เซลล์ก็จะมีการตอบสนองแบบกระตุ้น (excitatory response) นี่เกิดขึ้นเมื่อสารสื่อประสาทแบบกระตุ้น ซึ่งโดยปกติคือกลูตาเมต เข้าไปยึดเดนไดรต์ของเซลล์ และก่อให้เกิดการไหลของไอออนโซเดียมเข้าไปในเซลล์ ผ่านประตูไอออนที่อยู่ใกล้จุดที่ถูกยึด

ความเปลี่ยนแปลงอย่างนี้ในสภาวะให้ซึมผ่านได้ของเยื่อหุ้มเซลล์ในเดนไดรต์ เรียกว่า ศักย์หลายค่า (graded potential[35]) แบบเฉพาะที่ และทำให้ศักย์ของเยื่อหุ้มเซลล์เปลี่ยนจากศักย์ระดับพัก (resting potential) ที่อยู่ในเขตขั้วลบ ให้เป็นศักย์ที่เป็นบวกเพิ่มขึ้น เป็นกระบวนการที่เรียกกันว่า การลดขั้ว (depolarization) การเปิดของประตูโซเดียมหนึ่งจะทำให้ประตูโซเดียมที่อยู่ใกล้ ๆ กันเปิด ทำให้การเปลี่ยนแปลงของสภาวะให้ซึมผ่านได้ขยายไปจากเดนไดรต์ไปสู่ตัวเซลล์

ถ้าศักย์หลายค่า[35]มีกำลังพอ หรือถ้ามีศักย์หลายค่าเกิดต่อ ๆ กันในความถี่ที่รวดเร็วพอ การลดขั้วก็จะสามารถขยายไปถึงตัวเซลล์จนถึงแอกซอนฮิลล็อก (axon hillock[36]) แล้วต่อจากแอกซอนฮิลล็อก ก็อาจจะมีการสร้างศักยะงานขึ้นและถ่ายทอดไปทางแอกซอน เปิดประตูไอออนโซเดียมตามทางในแอกซอนที่สัญญาณนั้นดำเนินไป เมื่อสัญญาณเริ่มดำเนินไปในแอกซอน ศักย์เยื่อหุ้มเซลล์ได้เปลี่ยนไปถึงระดับศักย์ขีดเริ่มเปลี่ยน (Threshold potential[37]) แล้ว ซึ่งหมายความว่า การส่งสัญญาณนั้นถึงจุดที่หยุดไม่ได้

ประตูโซเดียมเป็นกลุ่ม ๆ ที่เปิดโดยความเปลี่ยนแปลงของศักย์เยื่อหุ้มเซลล์ ก็จะเพิ่มกำลังให้กับสัญญาณที่กำลังเดินทางไปจากแอกซอนฮิลล็อก ทำให้สัญญาณนั้นสามารถเดินทางไปตลอดความยาวของแอกซอน และเมื่อการลดขั้วกระจายไปถึงปลายแอกซอน (axon terminal) ปลายแอกซอนนั้นก็จะยังไอออนแคลเซียมภายนอกให้ซึมผ่านเข้ามาได้ ซึ่งจะผ่านเข้าไปในเซลล์โดยประตูไอออนแคลเซียม

แคลเซียมเป็นเหตุให้เซลล์ปล่อยสารสื่อประสาทที่เก็บไว้ในถุงไซแนปส์ (synaptic vesicle) เข้าไปในไซแนปส์ระหว่างเซลล์ประสาทสองเซลล์ที่มีชื่อเรียกว่า เซลล์ประสาทก่อนไซแนปส์ และเซลล์ประสาทหลังไซแนปส์ ถ้าสัญญาณจากเซลล์ประสาทก่อนไซแนปส์เป็นแบบกระตุ้น เซลล์นั้นก็จะปล่อยสารสื่อประสาทแบบกระตุ้น และอาจจะเป็นเหตุให้เกิดการตอบสนองแบบเดียวกัน (คือแบบกระตุ้น) ในเซลล์ประสาทหลังไซแนปส์[6]

เซลล์ประสาทเหล่านี้อาจจะสื่อสารกับตัวรับความรู้สึกอื่น ๆ และเซลล์ปลายทางของสัญญาณ รวมกันเป็นพัน ๆ เซลล์ ผ่านเครือข่ายเดนไดรต์ที่กว้างขวางและซับซ้อน การสื่อสารของตัวรับความรู้สึกโดยวิธีนี้ ยังการแยกแยะและการเข้าใจความหมายของสิ่งเร้าภายนอกที่ชัดเจนให้เป็นไปได้ กล่าวสรุปโดยผล ก็คือ ศักย์หลายค่า[35]ทำให้เกิดศักยะงานที่สื่อสารโดยระดับความถี่ ส่งไปทางแอกซอนของเซลล์ประสาท ซึ่งในที่สุดก็จะมาถึงคอร์เทกซ์จำเพาะกิจในสมอง แม้ในคอร์เทกซ์ที่มีกิจเฉพาะเจาะจงอย่างยิ่งนี้ สัญญาณที่ส่งมาถึงก็จะได้รับการประสานกับสัญญาณอื่น ๆ และอาจจะก่อให้เกิดการตอบสนองเป็นศักยะงานที่มีการส่งต่อ ๆ ไป[15]

การตอบสนองแบบยับยั้ง

ถ้าสัญญาณที่มาจากเซลล์ประสาทก่อนไซแนปส์เป็นแบบยับยั้ง สารสื่อประสาทแบบยับยั้งซึ่งโดยปกติแล้วก็คือสารกาบา (gamma-Aminobutyric acid, ตัวย่อ GABA) ก็จะถูกปล่อยไปในไซแนปส์[6] สารสื่อประสาทนี้ก่อให้เกิดศักย์หลังไซแนปส์แบบยับยั้ง (inhibitory postsynaptic potential) ในเซลล์ประสาทหลังไซแนปส์

การหลั่งสารสื่อประสาทแบบยับยั้ง จะยังเซลล์ประสาทหลังไซแนปส์ให้ไอออนคลอไรด์ซึมผ่านเข้าไปได้ ทำให้ศักย์เยื่อหุ้มประสาทของเซลล์เป็นขั้วลบมากขึ้น เยื่อหุ้มประสาทที่เป็นขั้วลบมากขึ้นทำให้เป็นไปได้น้อยลงในการที่เซลล์จะยิงศักยะงาน เป็นการยับยั้งนิวรอนไม่ให้ส่งสัญญาณต่อ ๆ ไป

เซลล์ประสาทหนึ่ง ๆ อาจจะรับการกระตุ้น หรือการยับยั้งขึ้นอยู่กับตัวกระตุ้น ดังที่กล่าวมานี้[38]

การตอบสนองในระบบกล้ามเนื้อ

ประสาทในระบบประสาทส่วนปลาย (peripheral nervous system) กระจายไปในส่วนต่าง ๆ ของร่างกาย รวมทั้งในเซลล์กล้ามเนื้อ (หรือใยกล้ามเนื้อ) ใยกล้ามเนื้อเชื่อมต่อกับเซลล์ประสาทสั่งการ (motor neuron)[39] ตรงจุดที่เรียกว่า รอยต่อประสาทและกล้ามเนื้อ (neuromuscular junction[40]) เมื่อระบบกล้ามเนื้อได้รับข้อมูลจากตัวกระตุ้นภายในหรือภายนอก ใยกล้ามเนื้อต่าง ๆ ก็จะได้รับการกระตุ้นจากเซลล์ประสาทสั่งการต่าง ๆ ที่สัมพันธ์กับใยกล้ามเนื้อ ระบบประสาทกลางจะส่งพลังประสาทไปตามเซลล์ประสาทต่าง ๆ จนกระทั่งถึงเซลล์ประสาทสั่งการซึ่งปล่อยสารสื่อประสาทอะเซทิลโคลิน (acetylcholine ตัวย่อ ACh) เข้าไปในรอยต่อประสาทและกล้ามเนื้อ

ACh เชื่อมกับหน่วยรับนิโคตินิก อะเซทิลโคลิน (nicotinic acetylcholine receptors) บนผิวของเซลล์กล้ามเนื้อและเปิดประตูไอออน อนุญาตให้ไอออนโซเดียมไหลเข้าไปในเซลล์ และให้ไออนโปแตสเซียมไหลออก การไหลเข้าไหลออกของไอออนทำให้เกิดการลดขั้ว ซึ่งก่อให้เกิดการปล่อยไอออนแคลเซียมภายในเซลล์ เมื่อไอออนแคลเซียมเชื่อมกับโปรตีนภายในเซลล์ ก็จะทำให้กล้ามเนื้อสามารถหดตัวได้ ซึ่งเป็นผลในที่สุดของกระบวนการรับรู้และตอบสนองต่อตัวกระตุ้นในระบบกล้ามเนื้อ[6]

การตอบสนองของระบบต่อมไร้ท่อ

ฮอร์โมนวาโซเพรสซิน

ระบบต่อมไร้ท่อรับอิทธิพลจากตัวกระตุ้นมากมายทั้งภายในภายนอก ตัวกระตุ้นภายในอย่างหนึ่งที่ทำให้เกิดการหลั่งฮอร์โมนในระบบก็คือความดันเลือด ความดันเลือดต่ำเป็นสาเหตุที่สำคัญของการหลั่งฮอร์โมนวาโซเพรสซิน (vasopressin[41]) ซึ่งเป็นฮอร์โมนที่ก่อให้เกิดการกักน้ำไว้ในไต และยังทำให้สัตว์นั้นหิวน้ำด้วย ถ้าความดันเลือดของสัตว์นั้นกลับเป็นปกติโดยการกักน้ำไว้ในไตหรือการดื่มน้ำ การหลั่งวาโซเพรสซินก็จะลดลงและก็จะมีการกักน้ำไว้ในไตน้อยลง

ภาวะไฮโปโวเลเมีย (Hypovolemia) คือการมีพลาสมาของเลือดที่ต่ำ ก็สามารถเป็นตัวกระตุ้นที่เป็นเหตุของการตอบสนองเช่นนี้ด้วย[42]

อีพีเนฟรีน

ฮอร์โมนอีพีเนฟรีน หรือที่รู้จักกันว่า อะดรีนาลีน เป็นสารที่ร่างกายใช้บ่อย ๆ เพื่อตอบสนองต่อความเปลี่ยนแปลงทั้งภายในภายนอก เหตุที่ทำให้เกิดการหลั่งฮอร์โมนนี้อย่างหนึ่งก็คือการตอบสนองโดยสู้หรือหนี (Fight-or-flight response) คือ เมื่อร่างกายประสบกับตัวกระตุ้นภายนอกที่อาจจะมีอันตราย ต่อมหมวกไตก็จะปล่อยอีพีเนฟรีน ทำให้เกิดความเปลี่ยนแปลงทางกายภาพ เช่นทำเส้นเลือดให้ตีบ ขยายม่านตา ทำหัวใจให้เต้นเร็วขึ้น ทำการหายใจให้เร็วขึ้น และเพิ่มการสันดาปของน้ำตาลกลูโคส การตอบสนองทากายภาพทั้งหมดเหล่านี้รับรองพฤติกรรมในสัตว์ที่อาจทำให้พ้นจากภัย ไม่ว่าจะตัดสินใจเพื่ออยู่สู้ หรือเพื่อหนีหลบอันตราย[43][44]

การตอบสนองของระบบการย่อย

ระยะเซฟาลิก

ระบบย่อยอาหารสามารถตอบสนองต่อตัวกระตุ้นภายนอก เช่นการเห็นหรือการได้กลิ่นอาหาร และก่อให้เกิดความเปลี่ยนแปลงทางกายภาพก่อนที่อาหารจะเข้ามาสู่ร่างกาย รีเฟล็กซ์นี้รู้จักกันว่า ระยะเซฟาลิก (cephalic phase) ของการย่อยอาหาร การเห็นและการได้กลิ่นอาหารเป็นตัวกระตุ้นที่มีกำลังพอที่จะให้เกิดการหลั่งน้ำลาย การหลั่งเอนไซม์ในกระเพาะและตับอ่อน และการหลั่งของต่อมไร้ท่อเพื่อเตรียมตัวที่จะรับสารอาหาร ก็โดยการเริ่มกระบวนการย่อยอาหารก่อนที่อาหารจะลงไปถึงกระเพาะอย่างนี้นี่แหละ ร่างกายจึงสามารถย่อยอาหารได้อย่างมีประสิทธิภาพ[45]

เมื่ออาหารมาถึงปาก รสและข้อมูลอื่นจากตัวรับความรู้สึกในปาก ก็จะเพิ่มการตอบสนองของระบบย่อยอาหารขึ้นไปอีก ตัวรับสารเคมี (chemoreceptors) และตัวรับแรงกล (mechanoreceptors) ที่เริ่มทำงานเพราะการเคี้ยวและการกลืนอาหาร ก็จะเพิ่มการหลั่งเอนไซม์ในกระเพาะและในลำไส้[46]

ระบบประสาทในลำไส้

ระบบย่อยอาหารสามารถตอบสนองต่อตัวกระตุ้นภายในเช่นเดียวกัน ใน ระบบประสาทในลำไส้ (enteric nervous system) แค่ระบบเดียวมีเซลล์ประสาทเป็นล้าน ๆ เซลล์ เซลล์เหล่านี้ทำหน้าที่เป็นตัวรับความรู้สึกที่สามารถตรวจจับความเปลี่ยนแปลงในทางเดินอาหาร เช่นเมื่ออาหารเข้ามาในลำไส้เล็ก และขึ้นอยู่กับว่าตัวรับความรู้สึกพบอะไร เอนไซม์บางชนิด หรือน้ำย่อยจากตับอ่อนและตับ อาจจะมีการหลั่งออกเพื่อช่วยการเผาผลาญและการย่อยสลายอาหาร[6]

แหล่งที่มา

WikiPedia: ตัวกระตุ้น http://www.encyclopedia.com/doc/1G2-3406000012.htm... http://www.sciencedirect.com/science/article/pii/S... http://onlinelibrary.wiley.com/doi/10.1111/j.1749-... //www.ncbi.nlm.nih.gov/pmc/articles/PMC2297467 //www.ncbi.nlm.nih.gov/pmc/articles/PMC3037419 //www.ncbi.nlm.nih.gov/pmc/articles/PMC487013 //www.ncbi.nlm.nih.gov/pmc/articles/PMC59728 http://www.ncbi.nlm.nih.gov/pubmed/10802651 //www.ncbi.nlm.nih.gov/pubmed/10802651 //www.ncbi.nlm.nih.gov/pubmed/11249846