ผลระยะยาว ของ ผลทางประสาทชีวภาพของการออกกำลังกาย

สภาพพลาสติกในระบบประสาท

Neuroplasticity (สภาพพลาสติกในระบบประสาท) เป็นกระบวนการปรับตัวของเซลล์ประสาทต่อสิ่งรบกวนในช่วงระยะเวลาหนึ่ง และโดยมากเกิดตอบสนองต่อสิ่งเร้าที่ซ้ำ ๆ[35]การออกกำลังกายแบบแอโรบิกเพิ่มการผลิตปัจจัยบำรุงสมอง (neurotrophic factors)[lower-alpha 1] (คือ brain-derived neurotrophic factor [BDNF], insulin-like growth factor 1 [IGF-1], vascular endothelial growth factor [VEGF], และ Glial cell line-derived neurotrophic factor [GDNF])ซึ่งอำนวยปรับปรุงการรู้คิด (cognitive function) และความจำต่าง ๆ โดยโปรโหมตการเกิดหลอดเหลือดในสมอง (angiogenesis) การเกิดเซลล์ประสาทของผู้ใหญ่ (adult neurogenesis)[lower-alpha 2] และการปรับเปลี่ยนทางประสาท (neuroplasticity) อย่างอื่น ๆ[2][5][17][37][38]

การออกกำลังกายแบบแอโรบิกอย่างสม่ำเสมอเป็นเวลาหลายเดือนจะทำให้ executive functions ดีขึ้นอย่างสำคัญ และเพิ่มปริมาตรเนื้อเทา (gray matter) ในเขตสมองหลายเขต โดยเฉพาะส่วนที่มีหน้าที่เกี่ยวกับ executive functions[1][5][6][7][9]โครงสร้างทางสมองที่ตอบสนองต่อการออกกำลังกายโดยขยายปริมาตรสูงสุดก็คือ prefrontal cortex, caudate nucleus, และฮิปโปแคมปัส[1][5][6][8]ส่วนที่น้อยลงมาก็คือ anterior cingulate cortex, สมองกลีบข้าง, สมองน้อย และ nucleus accumbens[5][6][8]และส่วน prefrontal cortex, caudate nucleus และ anterior cingulate cortex เป็นโครงสร้างทางสมองแบบโดพามีนและนอร์เอพิเนฟรินที่สำคัญที่สุดที่ควบคุมการรู้คิด[6][39]

การเกิดเซลล์ประสาทใหม่ที่ได้จากการออกกำลังกาย (คือปริมาตรที่เพิ่มขึ้นในเนื้อเทา) ในฮิปโปแคมปัสสัมพันธ์กับความจำปริภูมิ (spatial memory) ที่ดีขึ้นอย่างวัดได้[6][8][18][40]คะแนนฟิตเนสที่สูงกว่า วัดโดยอัตราการใช้ออกซิเจนระดับสูงสุดเมื่อออกกำลังกาย (VO2 max) สัมพันธ์กับ executive function ที่ดีกว่า การประมวลข้อมูลที่เร็วกว่า และปริมาตรเนื้อเทาที่เพิ่มขึ้นในฮิปโปแคมปัส, caudate nucleus, และ nucleus accumbens[1][6]การออกกำลังกายแบบแอโรบิกในระยะยาวยังสัมพันธ์กับการเปลี่ยนแปลงที่คงยืนและมีประโยชน์ที่นอกเหนือจากกรรมพันธุ์ (epigenetic) ที่ปรับปรุงการรับมือกับความเครียด ปรับปรุงการรู้คิด (cognitive function) และเพิ่มการทำงานของเซลล์ประสาท (c-Fos and BDNF signaling)[4][41]

BDNF signaling

ผลสำคัญที่สุดอย่างหนึ่งต่อสมองของการออกกำลังกายก็คือการแสดงออกและการสังเคราะห์ BDNF ซึ่งเป็นฮอร์โมน neuropeptide ในสมองและระบบประสาทนอกส่วนกลาง ซึ่งเป็นการส่งสัญญาณเพิ่มขึ้นให้หน่วยรับแบบ tyrosine kinase receptor คือ tropomyosin receptor kinase B (TrkB)[4][42][43]เนื่องจาก BDNF สามารถผ่านตัวกั้นระหว่างเลือด-สมอง (blood-brain barrier) ได้ การสังเคราะห์ BDNF ที่เพิ่มขึ้นก็ยังเพิ่มการส่งสัญญาณแบบ BDNF ในสมองอีกด้วย[37]และสัญญาณที่เพิ่มสัมพันธ์กับความเปลี่ยนแปลงนอกเหนือจากกรรมพันธุ์ จะปรับปรุงการรู้คิด อารมณ์ และความจำ[4][8][17][42]

นอกจากนั้นแล้ว งานวิจัยยังแสดงหลักฐานของบทบาทของ BDNF ในฮิปโปแคมปัสรวมทั้งการเกิดเซลล์ประสาท การเปลี่ยนสภาพของไซแนปส์ (synaptic plasticity) และการฟื้นสภาพทางประสาท[5][42]การออกกำลังกายแบบแอโรบิกหนักระดับปานกลาง-สูง เช่น การวิ่ง การว่ายน้ำ และการขี่จักรยานเพิ่มชีวสังเคราะห์ของ BDNF ในเลือดและในสมองถึง 3 เท่า[4][42][43]ระดับการออกกำลังกายสัมพันธ์ในเชิงบวกกับระดับของ BDNF ที่สูงขึ้นทั้งโดยการสังเคราะห์และการแสดงออกของยีน[4][42][43]งานวิเคราะห์อภิมานเกี่ยวกับผลของการออกกำลังกายต่อระดับ BDNF พบว่า การออกกำลังกายปานกลางอย่างสม่ำเสมอยังเพิ่มระดับ BDNF เมื่อพักอีกด้วย[17]

IGF-1 signaling

IGF-1 เป็นเพปไทด์ที่อำนวยผลบางอย่างของ growth hormone โดยออกฤทธิ์ผ่าน IGF-1 receptor เพื่อควบคุมการเติบโตของเนื้อเยื่อและการเปลี่ยนสภาพ[44]ในสมอง IGF-1 ทำหน้าที่เป็นปัจจัยบำรุงสมอง (neurotrophic factor) คล้ายกับ BDNF และมีบทบาทสำคัญในการรู้คิด การเกิดเซลล์ประสาท และการอยู่รอดของเซลล์ประสาท[42][45][46]การออกกำลังกายสัมพันธ์กับระดับที่เพิ่มขึ้นของ IGF-1 ในเลือด ซึ่งปรับสภาพทางประสาท (neuroplasticity) ในสมอง เพราะ IGF-1 สามารถผ่านตัวกั้นเลือด-สมอง และตัวกั้นเลือด-สมองร่วมไขสันหลัง (blood-cerebrospinal fluid barrier) ซึ่งก็คือ Choroid plexus ได้[5][42][44][45]ดังนั้น งานทบทวนวรรณกรรมหนึ่งจึงให้ข้อสังเกตว่า IGF-1 เป็นตัวอำนวยสำคัญของการเกิดเซลล์ประสาทของผู้ใหญ่ที่เป็นผลของการออกกำลังกาย และงานที่สองกำหนดว่า มันเป็นปัจจัยที่เชื่อม "ความฟิตของร่างกาย" กับ "ความฟิตของสมอง"[44][45]ปริมาณ IGF-1 ที่ปล่อยสู่เลือดมีสหสัมพันธ์เชิงบวกกับความแข็งขันและระยะเวลาของการออกกำลังกาย[47]

VEGF signaling

VEGF เป็นโปรตีนส่งสัญญาณแบบบำรุงสมอง (neurotrophic) และสร้างหลอดเลือด (angiogenic) ที่ยึดกับตัวรับ tyrosine kinases 2 ประเภท คือ VEGFR1 และ VEGFR2 และมีอยู่ทั้งในเซลล์ประสาทและเซลล์เกลียในสมอง[46]ภาวะขาดออกซิเจน (Hypoxia) ทำให้มีการแสดงออกของยีน VEGF มากขึ้นมีผลป้องกันเซลล์ประสาทที่ขาดออกซิเจน[46]เหมือนกับ BDNF และ IGF-1 การออกกำลังกายมีหลักฐานว่าเพิ่มชีวสังเคราะห์ของ VEGF ในเนื้อเยื่อนอกประสาทส่วนกลางซึ่งสามารถข้ามตัวกั้นเลือด-สมองได้ แล้วโปรโหมตการเกิดเซลล์ประสาทและการเกิดหลอดเหลือดในสมอง[37][38][48]การเพิ่มการส่งสัญญาณโดย VEGF ที่เป็นผลของการออกกำลังกายมีหลักฐานว่าช่วยการไหลเวียนของเลือดในสมอง และมีส่วนให้เกิดเซลล์ประสาทในฮิปโปแคมปัสที่เกิดจากการออกกำลังกาย[5][38][48]

สมองใหญ่ขึ้น

งานทบทวนวรรณกรรมที่ตรวจงานสร้างภาพในสมองพบว่า การออกกำลังกายให้สม่ำเสมอจะเพิ่มปริมาตรเนื้อเทาในเขตสมองที่เกี่ยวกับการประมวลความจำ การควบคุมการรู้คิด การเคลื่อนไหว และระบบรางวัล[1][5][6][8]ที่เพิ่มมากที่สุดก็คือ prefrontal cortex, caudate nucleus, และฮิปโปแคมปัส ซึ่งมีส่วนควบคุมการรู้คิดและการประมวลความจำ ในบรรดาหน้าที่การรู้คิดทั้งหลาย[1][6][8][9]นอกจากนั้นแล้ว ทั้งด้านซ้ายขวาของ prefrontal cortex, ฮิปโปแคมปัส และ cingulate cortex จะทำงานร่วมกันเมื่อทำกิจโดยเฉพาะ ๆ (functional connectivity) ในระดับที่สูงกว่า ตอบสนองต่อการออกกำลังกายแบบแอโรบิกอย่างสม่ำเสมอ[1][7]งานทบทวนวรรณกรรม 3 งานแสดงการเพิ่มปริมาตรเนื้อเทาที่ชัดเจนของ prefrontal cortex และฮิปโปแคมปัส ในผู้ใหญ่ปกติที่ออกำลังกายหนักกลาง ๆ เป็นเวลาหลายเดือน[1][6][49]เขตอื่นในสมองที่เพิ่มปริมาตรเนื้อเทาขึ้นปานกลางหรือน้อยกว่าเมื่อสร้างภาพสมองรวมทั้ง anterior cingulate cortex, สมองกลีบข้าง, สมองน้อย และ nucleus accumbens[5][6][8][50]

การออกกำลังกายให้สม่ำเสมอจะช่วยป้องกันการลดขนาดของฮิปโปแคมปัสและความจำที่แย่ลงที่เกิดขึ้นตามธรรมชาติในวัยสูงอายุ[5][6][8]คือ ผู้ใหญ่อายุเกิน 55 ที่อยู่เฉย ๆ จะมีปริมาตรฮิปโปแคมปัสลดลง 1-2% ทุก ๆ ปี[8][51]งานศึกษาสร้างภาพในสมองของผู้ใหญ่ 120 คนแสดงว่า การออกกำลังกายอย่างสม่ำเสมอเพิ่มปริมาตรของฮิปโปแคมปัสข้างซ้าย 2.12% และข้างขวา 1.97% ภายใน 1 ปี[8][51]ส่วนผู้ที่อยู่ในกลุ่มยืดตัวที่เบา ๆ ซึ่งมีระดับฟิตเนสที่ดีเมื่อเริ่มโปรแกรมสูญปริมาตรของฮิปโปแคมปัสน้อยกว่า ซึ่งเป็นหลักฐานว่า การออกกำลังกายช่วยป้องกันการเสื่อมความรู้คิดที่เกี่ยวกับอายุ[51]และโดยทั่วไปแล้ว บุคคลที่ออกกำลังกายมากกว่าในช่วง 1 ปีมีปริมาตรฮิปโปแคมปัสที่ดีกว่าและมีความจำดีกว่า[5][8]การออกกำลังกายแบบแอโรบิกมีหลักฐานว่าช่วยเพิ่มเนื้อขาวใน corpus callosum ด้านหน้า (เป็นส่วนที่ทำให้สมองด้านซ้ายขวาทำงานประสานกันได้) ซึ่งปกติจะฝ่อลงเมื่ออายุมากขึ้น[5][49]หน้าที่ของส่วนสมองต่าง ๆ ที่มีเนื้อเทาใหญ่ขึ้นเพราะการออกกำลังกายรวมทั้ง

การควบคุมการรู้คิดและความทรงจำ

ดูเพิ่มเติมที่: Executive functions

ตามบทบาทหน้าที่ของส่วนสมองที่มีปริมาตรเพิ่ม การออกกำลังกายช่วยปรับปรุงด้านต่าง ๆ ของการควบคุมการรู้คิดและความทรงจำ[5][7][9][58][59]โดยเฉพาะก็คือ การออกกำลังกายอย่างสม่ำเสมอช่วยให้ควบคุมการใส่ใจได้ดีขึ้น[lower-alpha 3] ให้ประมวลข้อมูลได้ดีขึ้น ปรับปรุงความยืดหยุ่นทางการรู้คิด (เช่น การเปลี่ยนความสนใจจากงานหนึ่งไปยังอีกงานหนึ่ง) การหยุดพฤติกรรมอัตโนมัติเพื่อทำสิ่งที่ได้ผลกว่า (inhibitory control)[lower-alpha 4] ความทรงจำใช้งานในด้านการอัพเดตและความจุ[lower-alpha 5] ความจำชัดแจ้งและความจำปริภูมิ[5][6][7][9][10][58][59]

ในผู้ใหญ่ ผลต่าง (effect size) ต่อการรู้คิดใหญ่ที่สุดในเรื่อง executive functions และเล็กน้อยจนถึงปานกลางสำหรับด้านต่าง ๆ ของความจำและความเร็วในการประมวลข้อมูล[1][10]บุคคลที่มีไลฟ์สไตล์แบบอยู่เฉย ๆ มักจะมีการควบคุมการรู้คิดที่เสียหายเทียบกับคนที่ไม่ออกกำลังกายแต่ไม่ชอบอยู่เฉย ๆ[9][58]ความสัมพันธ์แบบกลับกันระหว่างการออกกำลังกายกับการควบคุมการรู้คิดก็พบด้วยเช่นกัน คือ การควบคุมการรู้คิดที่ดีขึ้น เช่น การควบคุมการใส่ใจเป็นต้น จะช่วยให้บุคคลมีแนวโน้มที่จะออกกำลังกาย[9]งานปริทัศน์เป็นระบบต่องานที่ทำในเด็กแสดงว่า เรื่องที่ดีขึ้นเกี่ยวกับ executive functions สามารถเห็นได้หลังจากการออกกำลังกายเพียงครั้งเดียว แต่เรื่องอื่น ๆ (เช่น การควบคุมการใส่ใจ) จะดีขึ้นหลังจากออกกำลังกายอย่างสม่ำเสมอ[59]

แผนภาพของแกนไฮโปทาลามัส-พิทูอิทารี-อะดรีนัล (HPA)

แหล่งที่มา

WikiPedia: ผลทางประสาทชีวภาพของการออกกำลังกาย http://www.icd9data.com/2015/Volume3/87-99/93/defa... http://emedicine.medscape.com/article/324583-overv... http://link.springer.com/article/10.1007%2Fs00702-... http://onlinelibrary.wiley.com/doi/10.1111/apa.126... //www.ncbi.nlm.nih.gov/pmc/articles/PMC1724404 //www.ncbi.nlm.nih.gov/pmc/articles/PMC2040025 //www.ncbi.nlm.nih.gov/pmc/articles/PMC2817271 //www.ncbi.nlm.nih.gov/pmc/articles/PMC3041121 //www.ncbi.nlm.nih.gov/pmc/articles/PMC3139704 //www.ncbi.nlm.nih.gov/pmc/articles/PMC3567313