สมบัติของวงเล็บปัวส์ซอง ของ กลศาสตร์แฮมิลตัน

1) { f , f } = 0 {\displaystyle \{f,f\}=0}

2) { f , g } = − { g , f } {\displaystyle \{f,g\}=-\{g,f\}}

3) { f + g , h } = { f , h } + { g , h } {\displaystyle \{f+g,h\}=\{f,h\}+\{g,h\}}

4) { f g , h } = { f , h } g + f { g , h } {\displaystyle \{fg,h\}=\{f,h\}g+f\{g,h\}}

5) { f , { g , h } } + { g , { h , f } } + { h , { f , g } } = 0 {\displaystyle \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0} [5]

พี.เอ.เอ็ม.ดิเรก (P.A.M.Direc) พบว่าวงเล็บปัวส์ซองในแบบกลศาสตร์คลาสสิคมีความเชื่อมโยงกันกับวงเล็บการสลับที่ของกลศาสตร์ควอนตัม โดย พี.เอ.เอ็ม.ดิเรกสามารถที่จะกำหนดค่าวงเล็บปัวส์ซองในกลศาสตร์คลาสสิคได้จากการสลับที่ของตัวดำเนินการในกลศาสตร์ควอนตัม ซึ่งแสดงความหมายว่ากลศาสตร์คลาสสิคอยู่ในขอบเขตที่ค่าคงที่แพลงค์เป็นศูนย์

ใกล้เคียง

กลศาสตร์ควอนตัม กลศาสตร์ดั้งเดิม กลศาสตร์แฮมิลตัน กลศาสตร์ของไหล กลศาสตร์เมทริกซ์ กลศาสตร์ลากร็องฌ์ กลศาสตร์ กลศาสตร์ท้องฟ้า กลศาสตร์ภาวะต่อเนื่อง กลาส-ยัน ฮึนเตอลาร์