ลักษณะ ของ พลูโทเนียม

ทางกายภาพ

พลูโทเนียมมีลักษณะเป็นโลหะสีขาวเงินคล้ายนิกเกิล แต่เมื่อรวมตัวกับออกซิเจนจะเปลี่ยนเป็นสีเทามอ ๆ หรือเป็นสีเขียวเข้มปนเหลืองตามที่มีการรายงาน[3][4] ที่อุณหภูมิห้อง พลูโทเนียมมีกัมมันตภาพรังสีเป็นรังสีแอลฟา รูปแบบโครงสร้างที่พบได้มากที่สุดของพลูโทเนียม มีลักษณะแข็งและเปราะ แตกหักง่ายคล้ายเหล็กที่มีคาร์บอนสูง ยกเว้นเมื่อเจือกับโลหะอื่น จึงจะมีลักษณะนิ่มและดัดได้[3] แตกต่างจากโลหะส่วนใหญ่ พลูโทเนียมนำความร้อนและกระแสไฟฟ้าไม่ดี[3], มีจุดหลอมเหลวต่ำ (640 °C) และมีจุดเดือดสูง (3,327 °C) [3]

การสลายให้อนุภาคแอลฟาได้ปลดปล่อยนิวเคลียสฮีเลียมที่มีพลังงานสูงออกมา ซึ่งเป็นการแผ่รังสีชนิดก่อไอออนโดยส่วนมากของพลูโทเนียม[5] เพราะความร้อนจากการปลดปล่อยอนุภาคแอลฟานี้ ดังนั้นเมื่อสัมผัสก้อนพลูโทเนียมขนาดเท่าลูกเบสบอลจึงรู้สึกอุ่น ถ้าเป็นก้อนขนาดใหญ่สามารถต้มน้ำ 1 ลิตรให้เดือดได้ใน 2-3 นาที[6][7]

ความต้านทานไฟฟ้าของพลูโทเนียมที่อุณหภูมิห้องมีค่าสูงและสูงมากขึ้นเมื่ออุณหภูมิลดลงซึ่งตรงข้ามกับโลหะทั่วไป[8] เมื่ออุณหภูมิลดลงถึง 100 K หรือต่ำกว่าความต้านทานจะลดลงอย่างรวดเร็ว[8] และความต้านทานจะเริ่มสูงขึ้นที่อุณหภูมิ 20 K เพราะผลจากการแผ่รังสี โดยอัตราขึ้นอยู่กับส่วนประกอบไอโซโทปของตัวอย่าง[8]

พลูโทเนียมสามารถเรืองแสงได้ด้วยตัวเองจึงเกิดความล้าตลอดโครงสร้างผลึกซึ่งหมายถึงระเบียบลำดับของอะตอมมีความยุ่งเหยิงเนื่องจากการแผ่รังสี[9] อย่างไรก็ตามการเรืองแสงด้วยตัวเองสามารถนำไปสู่การอ่อนตัวที่ลดผลกระทบของความล้าตามอุณหภูมิที่เพิ่มขึ้นสูงกว่า 100 K[10]

พลูโทเนียมไม่เหมือนกับวัสดุส่วนมาก ความหนาแน่นของพลูโทเนียมจะเพิ่มขึ้นประมาณ 2.5% เมื่อละลาย แต่โลหะเหลวแสดงการลดลงเป็นเชิงเส้นตามอุณหภูมิ[8] เมื่อใกล้จุดหลอมเหลว พลูโทเนียมเหลวมีความหนืดและแรงตึงผิวสูงมากเมื่อเทียบกับโลหะอื่น[9]

อัญรูป

ดูบทความหลักที่: อัญรูปของพลูโทเนียม
พลูโทเนียมมีอัญรูปที่ต่างกันโดยปกติ 6 ชนิดที่ความดันบรรยากาศ: แอลฟา  (α), บีตา  (β), แกมมา  (γ), เดลตา  (δ), พรี เดลตา  (δ'), & เอปซิลอน  (ε) [11]

พลูโทเนียมมีอัญรูปที่ต่างกันโดยปกติ 6 ชนิดและชนิดที่ 7 (zeta, ζ) ภายใต้อุณหภูมิสูงและระยะความดันจำกัด[11]ทุกอัญรูปมีโครงสร้างหรือรูปแบบของธาตุที่ต่างกัน มีความหนาแน่นและโครงสร้างผลึกต่างกันแต่มีพลังงานภายในใกล้เคียงกันมาก ทำให้พลูโทเนียมไวต่อการเปลี่ยนแปลงของอุณหภูมิ, ความดัน หรือสภาวะทางเคมี และปริมาตรมีการเปลี่ยนแปลงสูงตามการเปลี่ยนสถานะจากอัญรูปหนึ่งไปสู่อัญรูปหนึ่ง[9] พลูโทเนียมจะมีความหนาแน่นเพิ่มขึ้นเมื่อหลอมละลาย ประมาณ 2.5% แต่เมื่อเป็นของเหลวความหนาแน่นจะลดลงเป็นเชิงเส้นโดยเทียบกับอุณหภูมิ[8] ความหนาแน่นในรูปแบบต่างๆจะอยู่ที่ 16.00 g/cm3 ถึง 19.86 g/cm3[12]

การมีหลายอัญรูปของพลูโทเนียมทำให้การตัดแบ่งพลูโทเนียมได้ยากเพราะมันเปลี่ยนสภาวะได้อย่างรวดเร็ว เช่นปล่อยรังสี α ที่อุณหภูมิห้องในพลูโทเนียมบริสุทธิ์ มันมีลักษณะการตัดแบ่งคล้ายเหล็กหล่อแต่จะเปลี่ยนเป็นพลาสติกและปล่อยรังสี β อ่อนๆเมื่ออุณหภูมิสูงขึ้นเล็กน้อย[13] การปล่อยรังสี α มีโครงสร้างผลึกแบบโมโนคลีนิคความสมมาตรต่ำ นอกจากนั้น มันเปราะบาง, แข็ง, อัดได้ และนำไฟฟ้าได้ไม่ดี[11]

พลูโทเนียมจะปล่อยรังสี δ นั้น ปกติจะพบที่อุณหภูมิ 310 °C ถึง 452 °C แต่จะเสถียรที่อุณหภูมิห้องเมื่อผสมแกลเลียม, อะลูมิเนียม, หรือซีเรียมเล็กน้อย, เพื่อปรับปรุงให้สามารถเชื่อมต่อกันได้[13] รูปแบบเดลตามีลักษณะคล้ายโลหะหลายอย่าง และโดยทั่วไปจะแข็งและดัดได้เหมือนอะลูมิเนียม[11]

ปฏิกิริยานิวเคลียร์แบบแตกตัว

พลูโทเนียมเป็นโลหะแอกทิไนด์กัมมันตภาพรังสีซึ่งไอโซโทปพลูโทเนียม-239 (Pu-239) เป็นหนึ่งในสามไอโซโทปแรกของวัสดุฟิสไซล์[14] (อีก 2 ชนิดคือยูเรเนียม-233 และ ยูเรเนียม-235) [15] นิวเคลียสอะตอมของไอโซโทปสามารถแตกตัวหรือแบ่งแยกนิวเคลียสเมื่อถูกชนด้วยนิวตรอนที่เคลื่อนที่ช้าและปลดปล่อยนิวตรอนมาเพียงพอที่จะทำให้เกิดปฏิกิริยาลูกโซ่ทางนิวเคลียร์โดยแบ่งแยกนิวเคลียสเพิ่มมากขึ้น

พลูโตเนียมเกรดสำหรับทำอาวุธ

Pu-239 มีค่าองค์ประกอบทวีคูณ (k) มากกว่าหนึ่งซึ่งหมายถึง ถ้าพลูโทเนียมมีมวลพอเพียงและรูปทรงที่เหมาะสม (เช่น ถูกอัดเป็นทรงกลม) มันจะมีมวลวิกฤต[16] ระหว่างการแบ่งแยกนิวเคลียส ส่วนของพลังงานยึดเหนี่ยวซึ่งยึดนิวเคลียสไว้ด้วยกันจะปลดปล่อยความร้อน, คลื่นแม่เหล็กไฟฟ้า และพลังงานจลน์ออกมาจำนวนมาก พลูโทเนียมหนึ่งกิโลกรัมสามารถสร้างแรงระเบิดเท่ากับระเบิดทีเอ็นที 20,000 ตัน[6] มันมีพลังงานมากพอที่ทำให้ Pu-239 สามารถนำไปใช้สร้างอาวุธนิวเคลียร์และใช้ในเครื่องปฏิกรณ์นิวเคลียร์

การมีอยู่ของไอโซโทปพลูโทเนียม-240 (Pu-240) นั้นเป็นสิ่งจำกัดสมรรถภาพของระเบิดนิวเคลียร์ เพราะ Pu-240 มีอัตราการแบ่งแยกนิวเคลียส (ฟิชชัน) ด้วยตนเองสูง (~440 นิวตรอนต่อวินาทีต่อกรัม—มากกว่า 1,000 นิวตรอนต่อวินาทีต่อกรัม[17]) ยิ่งมีระดับนิวตรอนสูงยิ่งเป็นเหตุให้ระเบิดเสี่ยงต่อการทำงานล้มเหลว[18] พลูโทเนียมแบ่งเป็นเกรดสำหรับทำอาวุธ,เกรดสำหรับเป็นเชื้อเพลิง และเกรดสำหรับใช้ในเครื่องปฏิกรณ์นิวเคลียร์ ซึ่งแบ่งตามอัตราร้อยละของ Pu-240 ในส่วนประกอบ เกรดสำหรับทำอาวุธจะมี Pu-240 น้อยกว่า 7% Pu-240 เกรดสำหรับเป็นเชื้อเพลิงจะมี Pu-240 7% ถึง 19% และเกรดสำหรับใช้ในเครื่องปฏิกรณ์นิวเคลียร์จะมี Pu-240 19% หรือมากกว่า[19] ไอโซโทปพลูโทเนียม-238 (Pu-238) นั้นไม่สามารถเกิดปฏิกิริยานิวเคลียร์แบบแตกตัวได้ถึงแม้มันจะมีการสลายปลดปล่อยรังสีแอลฟาก็ตาม[6]

ไอโซโทปและการสังเคราะห์

ดูบทความหลักที่: ไอโซโทปของพลูโทเนียม

พลูโทเนียมมี 12 ไอโซโทป[5] Pu-244 มีอายุมากที่สุด มีครึ่งชีวิต 80.8 ล้านปี, Pu-242 มีครึ่งชีวิต 373,300 ปี, และ Pu-239 มีครึ่งชีวิต 24,110 ปี[5] ไอโซโทปที่เหลือมีครึ่งชีวิตต่ำกว่า 7,000 ปี[5] มีสภาวะไม่เสถียร 8 สภาวะที่มีครึ่งชีวิตน้อยกว่า 1 วินาที[5]

ไอโซโทปของพลูโทเนียมมีเลขมวลระหว่าง 228 ถึง 247[5] ไอโซโทปที่เสถียรและมีเลขมวลต่ำที่สุดคือ Pu-244 มีการสลายตัวโดยเกิดฟิชชันขึ้นเองและปล่อยรังสีแอลฟาออกมา และส่วนมากกลายเป็นไอโซโทป ยูเรเนียม (92 โปรตอน) และ เนปทูเนียม (93 โปรตอน) [5] ส่วนขั้นแรกของการสลายไอโซโทปที่เลขมวลมากกว่า Pu-244 คือการปลดปล่อยรังสีเบต้าและส่วนมากจะกลายเป็นไอโซโทปอะเมริเซียม (95 โปรตอน) [5]

อนุกรมการสลายเนปทูเนียม (neptunium decay series) มี Pu-241 เป็นไอโซโทปตั้งต้นของอนุกรม สลายกลายเป็นอะเมริเซียม-241 ร่วมกับการปลดปล่อยอิเล็กตรอนหรือรังสี β[6]

Pu-238 และ Pu-239 เป็นการสังเคราะห์ไอโซโทปที่แพร่หลายมาก[6] Pu-239 ถูกสังเคราะห์โดยใช้ยูเรเนียม (U) และนิวตรอน (n) ร่วมกับการสลายปลดปล่อยรังสีบีตา (β−) เป็นเนปทูเนียม (Np) ซึ่งเป็นตัวกลาง:[20]

  92 238 U   +   0 1 n   ⟶     92 239 U   → 23.5   m i n β −     93 239 N p   → 2.3565   d β −     94 239 P u {\displaystyle \mathrm {^{238}_{\ 92}U\ +\ _{0}^{1}n\ \longrightarrow \ _{\ 92}^{239}U\ {\xrightarrow[{23.5\ min}]{\beta ^{-}}}\ _{\ 93}^{239}Np\ {\xrightarrow[{2.3565\ d}]{\beta ^{-}}}\ _{\ 94}^{239}Pu} }

นั่นก็คือนิวตรอนจากการฟิชชันของ U-235 จะถูกจับโดยนิวเคลียสของ U-238 กลายเป็น U-239 จากนั้นการสลายปลดปล่อยรังสีบีตา จะเพิ่มโปรตอนกลายเป็น Np-239 (ครึ่งชีวิต 2.36 วัน) และสลายปลดปล่อยรังสีบีตาอีกครั้งกลายเป็น Pu-239[21] ผู้ที่ทำงานในโครงการทูบ อัลลอยส์ (Tube Alloys) ทำนายปฏิกิริยานี้ตามหลักทฤษฎีได้ในปี ค.ศ. 1940

Pu-238 ถูกสังเคราะห์ด้วยการยิง U-238 ด้วยดิวเทอรอน (D, ไฮโดรเจนหนัก) ตามปฏิกิริยานี้:[22]

  92 238 U   +   1 2 D   ⟶     93 238 N p   +   2   0 1 n ;   93 238 N p   → 2.117   d β −     94 238 P u {\displaystyle \mathrm {^{238}_{\ 92}U\ +\ _{1}^{2}D\ \longrightarrow \ _{\ 93}^{238}Np\ +\ 2\ _{0}^{1}n\quad ;\quad _{\ 93}^{238}Np\ {\xrightarrow[{2.117\ d}]{\beta ^{-}}}\ _{\ 94}^{238}Pu} }

ในสมการ ดิวเทอเรียมที่ยิงใส่ U-238 ทำให้เกิด 2 อนุภาคนิวตรอนและ Np-238 และจะแผ่กัมมันตภาพรังสีโดยปล่อยรังสีเบต้าลบออกมาแล้วกลายไปเป็น Pu-238

ความร้อนจากการสลายและคุณสมบัติการแตกตัวของนิวเคลียส

ไอโซโทปของพลูโทเนียมภายใต้การสลายตัวของสารกัมมันตรังสีจะสร้างความร้อนจากการสลาย (decay heat) ขึ้น ไอโซโทปที่ต่างกันจะให้ผลรวมความร้อนต่อมวลที่ต่างกัน ความร้อนจากการสลายจะมีหน่วยเป็นวัตต์/กิโลกรัม หรือ มิลลิวัตต์/กรัม ในกรณีพลูโทเนียมที่มีขนาดใหญ่ (เช่น เบ้าอาวุธ) การระบายความร้อนที่เกิดจากตัวมันเองนั้นอาจจะเป็นเรื่องสำคัญมาก ทุกไอโซโทปจะสร้างรังสีแกมมาอ่อนๆจากการสลาย

ความร้อนจากการสลายของไอโซโทปพลูโทเนียม[23]
ไอโซโทปรูปแบบการสลายตัวของสารกัมมันตรังสีครึ่งชีวิต (ปี)ความร้อนจากการสลาย (W/kg)นิวตรอนฟิชชันเกิดเอง (1/(g·s))
Pu-238แอลฟา ไปเป็น U-23487.75602600
Pu-239แอลฟา ไปเป็น U-235241001.90.022
Pu-240แอลฟา ไปเป็น U-236, ฟิชชันเกิดเอง65606.8910
Pu-241บีตา ไปเป็น Am-24114.44.20.049
Pu-242แอลฟา ไปเป็น U-2383760000.11700

สารประกอบและคุณสมบัติทางเคมี

สภาวะออกซิเดชันต่างๆของพลูโทเนียมในสารละลาย

ที่อุณหภูมิห้อง พลูโทเนียมบริสุทธิ์จะมีสีเงินและจะคล้ำขึ้นเรื่อยๆเมื่อรวมตัวกับออกซิเจน[6] ไอออนของสารละลายพลูโทเนียมมี 5 สถานะออกซิเดชันในสารละลายในน้ำ:[12]

  • Pu (III), Pu3+ (สีม่วงน้ำเงิน)
  • Pu (IV), Pu4+ (สีน้ำตาลเหลือง)
  • Pu (V), PuO2+ (ชมพู?) [note 1]
  • Pu (VI), PuO22+ (สีชมพูส้ม)
  • Pu (VII), PuO53− (เขียว) –ไอออนนี้พบได้น้อย

สีของสารละลายพลูโทเนียมขึ้นกับสภาวะออกซิเดชันและสภาพความเป็นกรดของไอออนที่มีประจุลบ[24]สภาพความเป็นกรดของไอออนที่มีประจุลบจะกำหนดความเข้มข้นของสารเชิงซ้อนของพลูโทเนียม

โลหะพลูโทเนียมสร้างโดยการเกิดปฏิกิริยาทางเคมีของฟลูออไรด์พลูโทเนียม (IV) กับแบเรียม, แคลเซียม, หรือลิเทียมที่อุณหภูมิ 1200 °C[25] มันทำปฏิกิริยากับกรด, ออกซิเจน, และไอน้ำแต่ไม่ทำปฏิกิริยากับอัลคาไลและละลายได้ง่ายในไฮโดรคลอริกเข้มข้น, ไฮโดรไอโอดิก และกรดเปอร์คลอริก[26] โลหะเหลวนี้ต้องถูกเก็บในสุญญากาศหรือในอากาศเฉื่อยเพื่อป้องกันการทำปฏิกิริยาทางเคมีกับอากาศ[13] ที่อุณหภูมิ 135 °C พลูโทเนียมจะติดไฟในอากาศและจะระเบิดเมื่อนำไปใส่ในคาร์บอนเตตระคลอไรด์[27]

การลุกไหม้ติดไฟได้เอง (Pyrophoric) ของพลูโทเนียมภายใต้เงื่อนไขที่เหมาะสมทำให้มันดูเหมือนถ่านแดงๆที่คุติดไฟ

พลูโทเนียมเป็นโลหะที่เกิดปฏิกิริยาในอากาศชื้นหรืออาร์กอนชื้น มันจะรวมตัวกับออกซิเจนอย่างรวดเร็วและสร้างส่วนผสมระหว่างออกไซด์และไฮไดรด์[3] ถ้าโลหะพลูโทเนียมถูกวางไว้ไอน้ำนานพอ จะเกิดผง PuO2 ที่ผิวหน้า[3] พลูโทเนียมไฮไดรด์ก็ถูกสร้างขึ้นมาเช่นกันแต่ไอน้ำส่วนเกินนั้นทำให้เกิดเพียง PuO2 เท่านั้น[26]

ด้วยสิ่งปกคลุมนี้ ทำให้โลหะผสมพลูโทเนียมเป็นไพโรโฟริก (pyrophoric) หมายความว่ามันสามารถติดไฟได้โดยธรรมชาติ ปกติการจัดการกับพลูโทเนียมจึงทำในก๊าซเฉื่อยและอากาศแห้งอย่างไนโตรเจนหรืออาร์กอน[3] ออกซิเจนจะหน่วงผลของความชื้นและกระทำตัวเป็นตัวกระทำแบบไม่มีปฏิกิริยา[3]

พลูโทเนียมเกิดปฏิกิริยาทางเคมีกับออกซิเจนอย่างรวดเร็ว ทำให้เกิด PuO และ PuO2 พร้อมกับออกไซด์ตัวกลาง[12] คือพลูโทเนียมออกไซด์มากกว่า 40% โดยปริมาตรโลหะพลูโทเนียม[27] มันจะทำปฏิกิริยาทางเคมีกับกับแฮโลเจนทำให้เกิดสารประกอบ อย่าง PuX3 โดยที่ X สามารถเป็น F, Cl, Br หรือ I และแม้แต่ทำให้เกิด PuF4 ด้วยเช่นกัน[12] สิ่งที่เกิดตามมาจากการสังเกตออกซิแฮไลด์: PuOCl, PuOBr และ PuOI[12] เมื่อมันทำปฏิกิริยาทางเคมีกับคาร์บอนจะสร้าง PuC, ทำปฏิกิริยาทางเคมีกับไนโตรเจนจะสร้าง PuN และทำปฏิกิริยาทางเคมีกับซิลิคอนจะสร้าง PuSi2[12]

เบ้าที่ใช้ในการบรรจุพลูโทเนียมต้องสามารถต่อต้านคุณสมบัติรีดักชั่น ที่รุนแรงได้[13] วัสดุทนไฟอย่างแทนทาลัมและทังสเตนพร้อมด้วยออกไซด์, โบไรด์, คาร์ไบด์, ไนไทรด์ และ ซิลิไซด์ที่เสถียรมากสามารถทนพลูโทเนียมได้[13] การหลอมละลายในเตาไฟฟ้าสามารถให้สร้างแท่งโลหะเล็กๆได้โดยไม่ต้องใช้เบ้าหลอม[13]

พลูโทเนียมสามารถสร้างโลหะผสมและสารประกอบตัวกลางกับโลหะอื่นมากมาย แต่ยกเว้นลิเทียม, โพแทสเซียม และ โซเดียมของโลหะแอลคาไล; แบเรียม, แคลเซียม และ สตรอนเชียม ของโลหะแอลคาไลน์เอิร์ท; และ ยูโรเพียม และ อิตเทอร์เบียมของแรร์เอิร์ท[26] รวมถึงโลหะทนไฟอย่าง โครเมียม, โมลิบดีนัม, ไนโอเบียม, แทนทาลัม และ ทังสเตนซึ่งสามารถละลายได้ในพลูโทเนียมเหลว แต่ไม่ละลายหรือละลายเพียงเล็กน้อยในพลูโทเนียมแข็ง[26]

พลูโทเนียมในธรรมชาติ

พลูโทเนียมมีเพียงสองไอโซโทป (Pu-239 และ Pu-244) ที่สามารถพบได้ในธรรมชาติ พบ Pu-244 เพียงเล็กน้อย เกิดจากการสลายอนุภาคในแร่ยูเรเนียมและมีครึ่งชีวิตประมาณ 80 ล้านปี[28] และมีโอกาสเกิด Pu-239 ได้น้อยกว่า (ประมาณ 2-3 ในล้านล้าน) ซึ่งผลิตภัณฑ์จากการสลายอนุภาคของมันนั้นพบตามธรรมชาติในแร่ยูเรเนียมเข้มข้นบางก้อน[29] เช่น เครื่องปฏิกรณ์นิวเคลียร์หรือเตานิวเคลียร์ที่เกิดขึ้นเองตามธรรมชาติในโอโกล ประเทศกาบอง[30] อัตราส่วนของ Pu-239 ต่อ U ที่เหมืองทะเลสาบไซการ์ แหล่งแร่ยูเรเนียม อยู่ในช่วง 2.4 × 10−12 ถึง 44 × 10−12[31]

พบ Pu-239 ในร่างกายมนุษย์เล็กน้อย สาเหตุมาจากการทดลองอาวุธนิวเคลียร์บนพื้นดิน 550 ครั้งเท่าที่มีการรายงาน และส่วนใหญ่ หลายครั้งมาจากอุบัติเหตุทางนิวเคลียร์[27] การทดลองอาวุธนิวเคลียร์ในบรรยากาศส่วนใหญ่ยุติลงในปี ค.ศ. 1963 โดยการลงนามในสนธิสัญญาว่าด้วยการห้ามทดลองนิวเคลียร์แต่เพียงบางส่วน แต่ประเทศฝรั่งเศสนั้นยังคงทดลองต่อเนื่องไปจนถึงช่วงปี ค.ศ. 1980 และบางประเทศก็ยังมีการทดลองหลังปี ค.ศ. 1963 เพราะ Pu-239 เป็นการสร้างขึ้นโดยจำเพาะและเป็นผลของการสลายกัมมันตรังสีของแร่ยูเรเนียม Pu-239 จึงเป็นไอโซโทปที่มีมากที่สุดของพลูโทเนียม[27]

แหล่งที่มา

WikiPedia: พลูโทเนียม http://discovermagazine.com/2005/nov/end-of-pluton... http://fr.jpost.com/servlet/Satellite?cid=12358983... http://www.philosophy.umd.edu/Faculty/LDarden/scii... http://alsos.wlu.edu/qsearch.aspx?browse=science/P... http://georgewbush-whitehouse.archives.gov/news/re... http://www.nndc.bnl.gov/chart/ http://www.nndc.bnl.gov/content/evaluation.html http://www.atsdr.cdc.gov/toxprofiles/tp143.html http://www.cfo.doe.gov/me70/manhattan/publications... http://consolidationeis.doe.gov/PDFs/PlutoniumANLF...